scholarly journals Potential molecular mechanism of Yishen capsule in the treatment of diabetic nephropathy based on network pharmacology and molecular docking technology

Author(s):  
Yaling Hu ◽  
Shuang Liu ◽  
Wenyuan Liu ◽  
Ziyuan Zhang ◽  
Yuxiang Liu ◽  
...  

Abstract Background : Using network pharmacology and molecular docking technology to explore the mechanism of Yishen capsules in the treatment of diabetic nephropathy. Methods: Active components of Yishen Capsules were obtained using database such as TCMSP and TCMID, and diabetic nephropathy targets were obtained from databases such as Gencards, OMIM, DisGeNET. A network of "Yishen Capsule Components-Diabetic Nephropathy Targets-Pathways" was constructed by analyzing data above to screening out core targets for molecular docking verification. Finally, a rat model of diabetic nephropathy was generated, and renal tubular epithelial cells were extracted and cultured under high glucose conditions. Based on these experimental models, the key signal pathway target protein genes screened by network pharmacology were verified both in vitro and in vivo. Results: The main active components of Yishen Capsule in the treatment of diabetic nephropathy include quercetin, kaempferol, gallic acid, astragaloside IV and so on. Some key targets (such as AR, AKT1, TP53, ESR1, JUN) and important signal pathways (such as AGE-RAGE signal pathway, HIF-1 signal pathway and JAK-STAT signal pathway) were included in the treatment of diabetic nephropathy of Yishen Capsule. Molecular docking assay showed that most of the targets have good binding activity with the components of Yishen Capsules. Based on the results of network pharmacology, key target proteins in HIF-1α and JAK2/STAT3 signaling pathways were selected for experimental verification. Results presented that HIF-1α, JAK2, STAT3, TGF-β and MCP were increased under high glucose environment. With the treatment of Yishen Capsule, the expression of HIF-1α further increased, while the expression of JAK2, STAT3, MCP-1 and TGF-β were decreased. Conclusions : This study revealed the mechanism of Yishen Capsules in the treatment of diabetic nephropathy, which possesses the characteristics of multi-component, multi-target, and multi-pathway. Further experiments confirmed that Yishen Capsules interfered with HIF-1α and JAK/STAT signaling pathways to reduce inflammation and fibrosis damage in the kidney tissue of rats with diabetic nephropathy. Key Words: Diabetic Nephropathy(DN); Network pharmacology; Molecular docking;HIF-1α; JAK/STAT

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sizhen Gu ◽  
Yan Xue ◽  
Yang Gao ◽  
Shuyang Shen ◽  
Yuli Zhang ◽  
...  

Abstract Oral administration of indigo naturalis (IN) can induce remission in ulcerative colitis (UC); however, the underlying mechanism remains unknown. The main active components and targets of IN were obtained by searching three traditional Chinese medicine network databases such as TCMSP and five Targets fishing databases such as PharmMapper. UC disease targets were obtained from three disease databases such as DrugBank,combined with four GEO gene chips. IN-UC targets were identified by matching the two. A protein–protein interaction network was constructed, and the core targets were screened according to the topological structure. GO and KEGG enrichment analysis and bioGPS localization were performed,and an Herbs-Components-Targets network, a Compound Targets-Organs location network, and a Core Targets-Signal Pathways network were established. Molecular docking technology was used to verify the main compounds-targets. Ten core active components and 184 compound targets of IN-UC, of which 43 were core targets, were enriched and analyzed by bioGPS, GO, and KEGG. The therapeutic effect of IN on UC may involve activation of systemic immunity, which is involved in the regulation of nuclear transcription, protein phosphorylation, cytokine activity, reactive oxygen metabolism, epithelial cell proliferation, and cell apoptosis through Th17 cell differentiation, the Jak-STAT and IL-17 signaling pathways, toll-like and NOD-like receptors, and other cellular and innate immune signaling pathways. The molecular mechanism underlying the effect of IN on inducing UC remission was predicted using a network pharmacology method, thereby providing a theoretical basis for further study of the effective components and mechanism of IN in the treatment of UC.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Gaoxiang Wang ◽  
Lin Zeng ◽  
Qian Huang ◽  
Zhaoqi Lu ◽  
Ruiqing Sui ◽  
...  

Background. Diabetic nephropathy (DN) is a common and serious complication of diabetes, but without a satisfactory treatment strategy till now. Liuwei Dihuang pills (LDP), an effective Chinese medicinal formula, has been used to treat DN for more than 1000 years. However, its underlying mechanism of action is still vague. Methods. Active compounds and corresponding targets of LDP were predicted from the TCMSP database. DN disease targets were extracted from the OMIM, GeneCards, TTD, DisGeNET, and DrugBank databases. Subsequently, the “herbal-compound-target” network and protein-protein interaction (PPI) network were constructed and analyzed via the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Molecular docking utilized AutoDock Vina and PyMOL software. Results. 41 active components and 186 corresponding targets of LDP were screened out. 131 common targets of LDP and DN were acquired. Quercetin, kaempferol, beta-sitosterol, diosgenin, and stigmasterol could be defined as five crucial compounds. JUN, MAPK8, AKT1, EGF, TP53, VEGFA, MMP9, MAPK1, and TNF might be the nine key targets. The enrichment analysis showed that common targets were mainly associated with inflammation reaction, oxidative stress, immune regulation, and cell apoptosis. AGE-RAGE and IL-17 were the suggested two significant signal pathways. Molecular docking revealed that the nine key targets could closely bind to their corresponding active compounds. Conclusion. The present study fully reveals the multicompound’s and multitarget’s characteristics of LDP in DN treatment. Furthermore, this study provides valuable evidence for further scientific research of the pharmacological mechanisms and broader clinical application.


2021 ◽  
Author(s):  
Jing Yang ◽  
Chao-Tao Tang ◽  
Ruiri Jin ◽  
Bixia Liu ◽  
Peng Wang ◽  
...  

Abstract Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC by means of network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are considered to be very important to PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had good affinity with Hub gene. This study systematically elucidates the "multi-component, multi-target, multi-pathway" mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.


2021 ◽  
Vol 11 (8) ◽  
pp. 1354-1365
Author(s):  
Meifang Yin ◽  
Lijuan Dai ◽  
Wenpei Ling ◽  
Chunyu Luo ◽  
Shuzhi Qin ◽  
...  

Radix Paeoniae Rubra (RPR) is a widely used herb medicine. To better understand the mechanism of RPR in the treatment of myocardial ischemia-reperfusion injury (MIRI), in this study, the network of protein–protein interaction of the RPR-MIRI targets was constructed and analyzed through network pharmacology and molecular docking. The enrichment analysis was performed and the network map was established, and the componenttarget network was then verified by molecular docking. In the result, there were 14 components and 52 targets related to MIRI. The results of Gene Ontology (GO) analysis displayed 182 biological processes, 44 cellular components, 56 molecular functions. 45 signal pathways were collected from Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, which were mainly related to Rap1, PI3 K-Akt signal pathway and so on. Molecular docking verified that the active components had lower binding energy with key targets, indicating that it had better binding activity. In conclusion, the treatment of RPR on MIRI is implemented through multi-component, multi-target and multi-pathway, which makes a provision for exploring the therapeutic mechanism of RPR and expanding its clinical application.


2021 ◽  
Author(s):  
Jie-wen Zhao ◽  
Hai-dong Liu ◽  
Ming-yin Man ◽  
Lv-ya Wang ◽  
Ning Li ◽  
...  

Abstract Background Qishen Yiqi Pills (QSYQP) is a traditional Chinese compound recipe. However, our understanding of its mechanism has been hindered due to the complexity of its components and targets. In this work, the network pharmacology-based approaches were used to explore QSYQP’s pharmacological mechanism on treating cardiovascular diseases (CVD). Results From ETCM and TCM MESH databases we collected QSYQP’s 333 active components and their 674 putative targets. We constructed the sub-network influence by CVD genes and found that 40% QSYQP targets appeared in 20 modules, in which QSYQP’s targets and CVD genes co-existed as hub nodes in the sub-network. Functional enrichment analysis suggested that the 42 key targets were mainly expressed in platelets, blood vessels, cardiomyocytes, and other tissues. The main signaling pathways regulated and controlled by the key targets were inflammation, immunity, blood coagulation and energy metabolism. Network and pathway analysis identified 7 key targets, which were regulated by 7 compounds of QSYQP. 26 of the 42 important targets, including the 7 key targets were verified by literature mining. Twelve pairs of interactions between key targets and QSYQP’s compounds were validated by molecular docking. Further validation experiments suggested that QSYQP suppressed H/R induced apoptosis and cytoskeleton disruption of cardiomyocytes. Western blotting showed that the expression of cardiovascular diseases-related genes including ACTC1, FoxO1 and DIAPH1 was significantly decreased by establishing the hypoxia-reoxygenation model in vitro, while the protein expression of experimental group was significantly increased by adding QSYQP or its ingredients. Conclusion These results indicated the correlation of QSYQP treatment to the therapeutic effects of CVD. At the molecular level, this study revealed the multicomponent and multitargeting mechanisms of QSYQP in the regulation and treatment of cardiovascular diseases, potentially providing a reference for the further utilization of QSYQP.


2021 ◽  
Author(s):  
Zhiqiang Chen ◽  
Tong Lin ◽  
Xiaozhong Liao ◽  
Zeyun Li ◽  
Ruiting Lin ◽  
...  

Abstract Background: Cholangiocarcinoma refers to an epithelial cell malignancy with poor prognosis. Yinchenhao decoction (YCHD) showed positive effects on cancers, and associations between YCHD and cholangiocarcinoma remain unclear. This study aimed to screen out the effective active components of Yinchenhao decoction (YCHD) using network pharmacology, estimate their potential targets, screen out the pathways, as well as delve into the potential mechanisms on treating cholangiocarcinoma. Methods: By the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP) as well as literature review, the major active components and their corresponding targets were estimated and screened out. Using the software Cytoscape 3.6.0, a visual network was established using the active components of YCHD and the targets of cholangiocarcinoma. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways of the targets enrichment were performed. The AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The PyMOL software was utilized to visualize the docking results of active compounds and protein targets. In vivo experiment, the IC50 values and apoptosis rate in PI-A cells were detected using CCK-8 kit and Cell Cycle Detection Kit. The predicted targets were verified by the real-time PCR and western blot methods. Results: 32 effective active components with anti-tumor effects of YCHD were sifted in total, covering 209 targets, 96 of which were associated with cancer. Quercetin, kaempferol, beta-sitosterol, isorhamnetin, and stigmasterol were identified as the vital active compounds, and AKT1, IL6, MAPK1, TP53 as well as VEGFA were considered as the major targets. The molecular docking revealed that these active compounds and targets showed good binding interactions. These 96 putative targets exerted therapeutic effects on cancer by regulating signaling pathways (e.g., hepatitis B, the MAPK signaling pathway, the PI3K-Akt signaling pathway, and MicroRNAs in cancer). Our in vivo experimental results confirmed that YCHD showed therapeutic effects on cholangiocarcinoma by decreasing IC50 values, down-regulating apoptosis rate of cholangiocarcinoma cells, and lowering protein expressions. Conclusion:As predicted by network pharmacology strategy and validated by the experimental results, YCHD exerts anti-tumor effectsthrough multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of cholangiocarcinoma.


2021 ◽  
Vol 16 (6) ◽  
pp. 1934578X2110240
Author(s):  
Peng-yu Chen ◽  
Chen Wang ◽  
Ying Zhang ◽  
Chong Yuan ◽  
Bing Yu ◽  
...  

Introduction Angong Niuhuang Pills (AGNH), a Chinese patent medicine recommended in the “Diagnosis and Treatment Plan for COVID-19 (8th Edition),” may be clinically effective in treating COVID-19. The active components and signal pathways of AGNH through network pharmacology have been examined, and its potential mechanisms determined. Methods We screened the components in the Traditional Chinese Medicine Systems Pharmacology (TCMSP) via Drug-like properties (DL) and Oral bioavailability (OB); PharmMapper and GeneCards databases were used to collect components and COVID-19 related targets; KEGG pathway annotation and GO bioinformatics analysis were based on KOBAS3.0 database; “herb-components-targets-pathways” (H-C-T-P) network and protein-protein interaction network (PPI) were constructed by Cytoscape 3.6.1 software and STRING 10.5 database; we utilized virtual molecular docking to predict the binding ability of the active components and key proteins. Results A total of 87 components and 40 targets were screened in AGNH. The molecular docking results showed that the docking scores of the top 3 active components and the targets were all greater than 90. Conclusion Through network pharmacology research, we found that moslosooflavone, oroxylin A, and salvigenin in AGNH can combine with ACE2 and 3CL, and then are involved in the MAPK and JAK-STAT signaling pathways. Finally, it is suggested that AGNH may have a role in the treatment of COVID-19.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199171
Author(s):  
ZiXin Yuan ◽  
Can Zeng ◽  
Bing Yu ◽  
Ying Zhang ◽  
TianShun Wang ◽  
...  

To investigate the mechanism of action of components of Yinma Jiedu granules in the treatment of coronavirus disease 2019 (COVID-19) using network pharmacology and molecular docking. The main chemical components of Yinma Jiedu granules were collected in the literature and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. Using the SwissTargetPrediction database, the targets of the active component were identified and further correlated to the targets of COVID-19 through the GeneCards database. The overlapping targets of Yinma Jiedu granules components and COVID-19 were identified as the research target. Using the Database for Annotation, Visualization and Integrated Discovery database to carry out the target gene function Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation and Cytoscape 3.6.1 software was used to construct a “component-target-pathway” network. The protein-protein interaction network was built using Search Tool for the Retrieval of Interacting Genes/Proteins database. Using Discovery Studio 2016 Client software to study the virtual docking of key protein and active components. One hundred active components were screened from the Yinma Jiedu Granules that involved 67 targets, including mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor, tumor necrosis factor, tumor protein 53, and MAPK1. These targets affected 109 signaling pathways including hypoxia-inducible factor-1, apoptosis, and Toll-like receptor signaling pathways. Molecular docking results showed that the screened active components have a strong binding ability to the key targets. In this study, through network pharmacology and molecular docking, we justified the multicomponent, multitarget, and multipathways of Yinma Jiedu Granules in the treatment of COVID-19.


2021 ◽  
Author(s):  
Yongchang Guo ◽  
Dapeng Zhang ◽  
Yuju Cao ◽  
Xiaoyan Feng ◽  
Caihong Shen ◽  
...  

Abstract Ethnopharmacological relevanceOsteonecrosis of the femoral head (ONFH) is still a challenge for orthopedists worldwide, which may lead to disability in patients without effective treatment. A newly developed formula of Chinese medicine, Danyu Gukang Pills (DGP), was recognized to be effective for ONFH. Nevertheless, its molecular mechanisms remain to be clarified. MethodsNetwork pharmacology was adopted to detect the mechanism of DGP on ONFH. The compounds of DGP were collected from the online databases, and active components were selected based on their OB and DL index. The potential proteins of DGP were acquired from TCMSP database, while the potential genes of ONFH were obtained from Gene Cards and Pubmed Gene databases. The function of Gene and potential pathways were researched by GO and KEGG pathway enrichment analysis. The compounds-targets and targets-pathways network were constructed in an R and Cytosacpe software. The mechanism was further investigated via molecular docking. Finally, in-vitro experiments were validated in the BMSCs. ResultsA total of 2305 compounds in DGP were gained, among which, 370 were selected as active components for which conforming to criteria. Combined the network analysis, molecular docking and in-vitro experiments, the results firstly demonstrated that the treatment effect of DGP on ONFH may be closely related to HIF-1α, VEGFA and HIF-1 signaling pathway. ConclusionThe current study firstly researched the molecular mechanism of DGP on ONFH based on network pharmacology. The results indicated that DGP may exert the effect on ONFH targeting on HIF-1α and VEGFA via HIF-1 signaling pathway.


Author(s):  
Rong Zhao ◽  
Meng-Meng Zhang ◽  
Dan Wang ◽  
Wei Peng ◽  
Qing Zhang ◽  
...  

Background: Zanthoxylum bungeanum Maxim., a traditional Chinese herbal medicine, has been reported to possess therapeutic effects on diseases induced by oxidative stress (DOS), such as atherosclerosis and diabetes complication. However, the active components and its related mechanisms are still not systematically reported. Objective: The current study was aimed to explore the main active ingredients and its molecular mechanisms of Z. bungeanum for treating DOS using network pharmacology combined with molecular docking simulation. Methods: The active components of Z. bungeanum pericarps, in addition to the interacting targets, were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. These components were filtered using the parameters of oral bioavailability and drug-likeness, and the targets related to DOS were obtained from the Genecards and OMIM database. Furthermore, the overlapping genes were obtained, and a protein-protein interaction was visualized using the STRING database. Next, the Cytoscape software was employed to build a disease/drug/component/target network, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. Finally, the potential active compounds and their related targets were validated using molecular docking technology. Results: A total of 61 active compounds, 280 intersection genes, and 105 signaling pathways were obtained. Functional enrichment analysis suggested that DOS occurs possibly through the regulation of many biological pathways, such as AGERAGE and HIF-1 signaling pathways. Thirty of the identical target genes showed obvious compact relationships with others in the STRING analysis. Three active compounds, quercetin, diosmetin, and beta-sitosterol, interacting with the four key targets, exhibited strong affinities. Conclusion: The findings of this study not only indicate the main mechanisms involving in the oxidative stress-induced diseases, but also provide the basis for further research on the active components of Z. bungeanum for treating DOS.


Sign in / Sign up

Export Citation Format

Share Document