scholarly journals A Comparison of in-house and Shared Rapidplan Models for Prostate Radiation Therapy Planning

Author(s):  
Elizabeth Ruth Claridge Mackonis ◽  
Jonathan Sykes ◽  
Nicholas Hardcastle ◽  
Anthony Espinoza ◽  
Alison Brown ◽  
...  

Abstract PurposeKnowledge-based planning (KBP) can increase plan quality, consistency and efficiency. In this study, we assess the success of a using a publicly available KBP model compared with developing an in-house model for prostate cancer radiotherapy using a single, commercially available treatment planning system based on the ability of the model to achieve the centre’s planning goals. Methods and MaterialsTwo radiation oncology centres each created a prostate cancer KBP model using the Eclipse RapidPlan software. These two models and a third publicly-available, shared model were tested at three centres in a retrospective planning study. Results The publicly-available model achieved lower rectum doses than the other two models. However, the planning-target-volume (PTV) doses did not meet the local planning goals and the model could not be adjusted to correct this. As a result, the plans most likely to satisfy local planning goals and requirements were created using an in-house model. For centres without an existing in-house model, a model created by another centre with similar planning goals was found to be preferred. ConclusionsVariations in local planning practices including contouring, treatment technique and planning goals can influence the relative performance of KBP. The value of publicly available KBP models could be enhanced through standardisation of planning goals and contouring guidelines, providing information related to the planning goals used to create the model and increased flexibility to allow local adaptation of the KBP model.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Vanessa Da Silva Mendes ◽  
Lukas Nierer ◽  
Minglun Li ◽  
Stefanie Corradini ◽  
Michael Reiner ◽  
...  

Abstract Background The aim of this study was to evaluate and compare the performance of intensity modulated radiation therapy (IMRT) plans, planned for low-field strength magnetic resonance (MR) guided linear accelerator (linac) delivery (labelled IMRT MRL plans), and clinical conventional volumetric modulated arc therapy (VMAT) plans, for the treatment of prostate cancer (PCa). Both plans used the original planning target volume (PTV) margins. Additionally, the potential dosimetric benefits of MR-guidance were estimated, by creating IMRT MRL plans using smaller PTV margins. Materials and methods 20 PCa patients previously treated with conventional VMAT were considered. For each patient, two different IMRT MRL plans using the low-field MR-linac treatment planning system were created: one with original (orig.) PTV margins and the other with reduced (red.) PTV margins. Dose indices related to target coverage, as well as dose-volume histogram (DVH) parameters for the target and organs at risk (OAR) were compared. Additionally, the estimated treatment delivery times and the number of monitor units (MU) of each plan were evaluated. Results The dose distribution in the high dose region and the target volume DVH parameters (D98%, D50%, D2% and V95%) were similar for all three types of treatment plans, with deviations below 1% in most cases. Both IMRT MRL plans (orig. and red. PTV margins) showed similar homogeneity indices (HI), however worse values for the conformity index (CI) were also found when compared to VMAT. The IMRT MRL plans showed similar OAR sparing when the orig. PTV margins were used but a significantly better sparing was feasible when red. PTV margins were applied. Higher number of MU and longer predicted treatment delivery times were seen for both IMRT MRL plans. Conclusions A comparable plan quality between VMAT and IMRT MRL plans was achieved, when applying the same PTV margin. However, online MR-guided adaptive radiotherapy allows for a reduction of PTV margins. With a red. PTV margin, better sparing of the surrounding tissues can be achieved, while maintaining adequate target coverage. Nonetheless, longer treatment delivery times, characteristic for the IMRT technique, have to be expected.


2015 ◽  
Vol 49 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Christopher Amaloo ◽  
Daryl P. Nazareth ◽  
Lalith K. Kumaraswamy

Abstract Background. Volumetric modulated arc therapy (VMAT) has quickly become accepted as standard of care for the treatment of prostate cancer based on studies showing it is able to provide faster delivery with adequate target coverage and reduced monitor units while maintaining organ at risk (OAR) sparing. This study aims to demonstrate the potential to increase dose conformality with increased planner control and OAR sparing using a hybrid treatment technique compared to VMAT. Methods. Eleven patients having been previously treated for prostate cancer with VMAT techniques were replanned with a hybrid technique on Varian Treatment Planning System. Multiple static IMRT fields (2 to 3) were planned initially based on critical OAR to reduce dose but provide some planning treatment volume (PTV) coverage. This was used as a base dose plan to provide 30-35% coverage for a single arc VMAT plan. Results. The clinical VMAT plan was used as a control for the purposes of comparison. Average of all OAR sparing between the hybrid technique and VMAT showed the hybrid plan delivering less dose in almost all cases except for V80 of the bladder and maximum dose to right femoral head. PTV coverage was superior with the VMAT technique. Monitor unit differences varied, with the hybrid plan able to deliver fewer units 37% of the time, similar results 18% of the time, and higher units 45% of the time. On average, the hybrid plan delivered 10% more monitor units. Conclusions. The hybrid plan can be delivered in a single gantry rotation combining aspects of VMAT with regions of dynamic intensity modulated radiation therapy (IMRT) within the treatment arc.


2020 ◽  
Author(s):  
Zhen Xu ◽  
Xiao-Dong Li ◽  
Lu Fu ◽  
Yong-Hua Yu

Abstract Background: To compare the difference of location by computed tomography (CT) and multiparametric magnetic resonance imaging (mpMRI) on the target delineation and volume for organs at risk (OARs) among patients with prostate cancer. Methods: T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and CT were performed among 11 patients who received radiotherapy for prostate cancer at our center between August 2018 and December 2019. The target areas were delineated using the Eclipse system, and the radiotherapy plans were made based on the treatment planning system (TPS) to compare target volume and dose-volume histogram (DVH) relative to rectum and bladder. Results: The clinical target volume (CTV) of T1WI and T2WI decreased by 18.8% (P=0.001) and 22.72% (P=0.003), respectively, compared with CT. The planning target volume (PTV) on T1WI and T2WI were 20.45% (P=0.015) and 22.31% (P= 0.008) smaller than that defined by CT. There was no significant difference in either CTV or PTV between the areas outlined on T1WI and T2WI. The DVH resulting from CT and MRI comparisons showed that the rectum and bladder dose levels were lower with MRI images compared with CT. It should be noted that at the lateral directions, the range of outlining on T2WI sequence were significantly smaller than others. Conclusion: Target planning based on mpMRI (T1WI, T2WI) is more precise than CT, which can significantly reduce the range of the target area and the volume of rectum and bladder exposed to high levels of radiation, improve the fitness and radiographic accuracy of the target area, especially on T2WI.


2021 ◽  
Author(s):  
Nina Pavlović ◽  
◽  
Tatjana Miladinović ◽  
Darko Stojanović ◽  
Aleksandar Miladinović ◽  
...  

To identify the best treatment technique for patients with left-sided breast cancer, we compared plans obtained with a hybrid intensity-modulated radiation therapy (hIMRT) and conventional three- dimensional conformal radiation therapy (3D-CRT). Dosimetric indices for PTVs and OARs were calculated. Also, the dose coverage, homogeneity index, conformity index of the target, and the dose volumes of critical structures were analyzed. A sample of seven patients who were selected randomly treated in University Clinical Center Kragujevac between 2019 and 2020 was selected for the study. Therapy plans for both techniques were made with an ECLIPSE treatment planning system for each patient based on the same images and contours. The hybrid IMRT technique consists of two static opposed tangential fields and four optimized IMRT fields (dose ratio 70:30). For 3D-CRT planning, one isocenter with half-beam blocked tangential fields with wedges was used. All treatment plans were generated with 6 MV photon beam. Hybrid IMRT plans compared to the 3D-CRT resulted in better dose delivered to 95% (D95) of the planning target volume (PTV) and better heterogeneity HI and conformity CI. Protection for critical organs such as the heart, lungs, and contralateral breast is slightly worse than those obtained by 3D-CRT.


2020 ◽  
Vol 132 (5) ◽  
pp. 1473-1479 ◽  
Author(s):  
Eun Young Han ◽  
He Wang ◽  
Dershan Luo ◽  
Jing Li ◽  
Xin Wang

OBJECTIVEFor patients with multiple large brain metastases with at least 1 target volume larger than 10 cm3, multifractionated stereotactic radiosurgery (MF-SRS) has commonly been delivered with a linear accelerator (LINAC). Recent advances of Gamma Knife (GK) units with kilovolt cone-beam CT and CyberKnife (CK) units with multileaf collimators also make them attractive choices. The purpose of this study was to compare the dosimetry of MF-SRS plans deliverable on GK, CK, and LINAC and to discuss related clinical issues.METHODSTen patients with 2 or more large brain metastases who had been treated with MF-SRS on LINAC were identified. The median planning target volume was 18.31 cm3 (mean 21.31 cm3, range 3.42–49.97 cm3), and the median prescribed dose was 27.0 Gy (mean 26.7 Gy, range 21–30 Gy), administered in 3 to 5 fractions. Clinical LINAC treatment plans were generated using inverse planning with intensity modulation on a Pinnacle treatment planning system (version 9.10) for the Varian TrueBeam STx system. GK and CK planning were retrospectively performed using Leksell GammaPlan version 10.1 and Accuray Precision version 1.1.0.0 for the CK M6 system. Tumor coverage, Paddick conformity index (CI), gradient index (GI), and normal brain tissue receiving 4, 12, and 20 Gy were used to compare plan quality. Net beam-on time and approximate planning time were also collected for all cases.RESULTSPlans from all 3 modalities satisfied clinical requirements in target coverage and normal tissue sparing. The mean CI was comparable (0.79, 0.78, and 0.76) for the GK, CK, and LINAC plans. The mean GI was 3.1 for both the GK and the CK plans, whereas the mean GI of the LINAC plans was 4.1. The lower GI of the GK and CK plans would have resulted in significantly lower normal brain volumes receiving a medium or high dose. On average, GK and CK plans spared the normal brain volume receiving at least 12 Gy and 20 Gy by approximately 20% in comparison with the LINAC plans. However, the mean beam-on time of GK (∼ 64 minutes assuming a dose rate of 2.5 Gy/minute) plans was significantly longer than that of CK (∼ 31 minutes) or LINAC (∼ 4 minutes) plans.CONCLUSIONSAll 3 modalities are capable of treating multiple large brain lesions with MF-SRS. GK has the most flexible workflow and excellent dosimetry, but could be limited by the treatment time. CK has dosimetry comparable to that of GK with a consistent treatment time of approximately 30 minutes. LINAC has a much shorter treatment time, but residual rotational error could be a concern.


Author(s):  
Daryoush Khoramian ◽  
Soroush Sistani ◽  
Bagher Farhood

Abstract Aim: In radiation therapy, accurate dose distribution in target volume requires accurate treatment setup. The set-up errors are unwanted and inherent in the treatment process. By achieving these errors, a set-up margin (SM) of clinical target volume (CTV) to planning target volume (PTV) can be determined. In the current study, systematic and random set-up errors that occurred during prostate cancer radiotherapy were measured by an electronic portal imaging device (EPID). The obtained values were used to propose the optimum CTV-to-PTV margin in prostate cancer radiotherapy. Materials and methods: A total of 21 patients with prostate cancer treated with external beam radiation therapy (EBRT) participated in this study. A total of 280 portal images were acquired during 12 months. Gross, population systematic (Σ) and random (σ) errors were obtained based on the portal images in Anterior–Posterior (AP), Medio-Lateral (ML) and Superior–Inferior (SI) directions. The SM of CTV to PTV were then calculated and compared by using the formulas presented by the International Commission on Radiation Units and Measurements (ICRU) 62, Stroom and Heijmen and Van Herk et al. Results: The findings showed that the population systematic errors during prostate cancer radiotherapy in AP, ML and SI directions were 1·40, 1·95 and 1·94 mm, respectively. The population random errors in AP, ML and SI directions were 2·09, 1·85 and 2·29 mm, respectively. The SM of CTV to PTV calculated in accordance with the formula of ICRU 62 in AP, ML and SI directions were 2·51, 2·68 and 3·00 mm, respectively. And according to Stroom and Heijmen, formula were 4·23, 5·19 and 5·48 mm, respectively. And Van Herk et al. formula were 4·96, 6·17 and 6·45 mm, respectively. Findings: The SM of CTV to PTV in all directions, based on the formulas of ICRU 62, Stroom and Heijmen and van Herk et al., were equal to 2·73, 4·98 and 5·86 mm, respectively; these values were obtained by averaging the margins in all directions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
K. Abdul Haneefa ◽  
K. K. Shakir ◽  
A. Siddhartha ◽  
T. Siji Cyriac ◽  
M. M. Musthafa ◽  
...  

Dosimetric studies of mixed field photon beam intensity modulated radiation therapy (IMRT) for prostate cancer using pencil beam (PB) and collapsed cone convolution (CCC) algorithms using Oncentra MasterPlan treatment planning system (v. 4.3) are investigated in this study. Three different plans were generated using 6 MV, 15 MV, and mixed beam (both 6 and 15 MV). Fifteen patients with two sets of plans were generated: one by using PB and the other by using CCC for the same planning parameters and constraints except the beam energy. For each patient’s plan of high energy photons, one set of photoneutron measurements using solid state neutron track detector (SSNTD) was taken for this study. Mean percentage of V66 Gy in the rectum is 18.55±2.8, 14.58±2.1, and 16.77±4.7 for 6 MV, 15 MV, and mixed-energy plans, respectively. Mean percentage of V66 Gy in bladder is 16.54±2.1, 17.42±2.1, and 16.94±41.9 for 6 MV, 15 MV, and mixed-energy plans, respectively. Mixed fields neutron contribution at the beam entrance surface is 45.62% less than at 15 MV photon beam. Our result shows that, with negligible neutron contributions, mixed field IMRT has considerable dosimetric advantage.


2020 ◽  
Author(s):  
Yijiang Li ◽  
Han Bai ◽  
Danju Huang ◽  
Feihu Chen ◽  
Xuhong Liu ◽  
...  

Abstract Purpose: This study aimed to evaluate (1) the performance of the Auto-Planning module embedded in the Pinnacle treatment planning system (TPS) with 30 left-side breast cancer plans and (2) the dose-distance correlations between dose-based patients and overlap volume histogram-based (OVH) patients. Method: A total of 30 patients with left-side breast cancer after breast-conserving surgery were enrolled in this study. The clinical manual-planning (MP) and the Auto-Planning (AP) plans were generated by Monaco and by the Auto-Planning module in Pinnacle respectively. The geometric information between organ at risk (OAR) and planning target volume (PTV) of each patient was described by the OVH. The AP and MP plans were ranked to compare with the geometry-based patients from OVH. The Pearson product-moment correlation coefficient (R) was used to describe the correlations between dose-based patients (APs and MPs) and geometry-based patients (OVH). Dosimetric differences between MP and AP plans were evaluated with statistical analysis. Result: The correlation coefficient (mean R = 0.71) indicated that the AP plans have a high correlation with geometry-based patients from OVH, whereas the correlation coefficient (mean R = 0.48) shows a weak correlation between MP plans and geometry-based patients. For different indicators, the dose distribution of V5Gy in the ipsilateral lung (AP: mean R = 0.82; MP: mean R = 0.58) is more relevant to geometry-based patients compared to the dose distribution of in the heart (AP: mean R = 0.4; MP: mean R = 0.19). The dosimetric comparison revealed a statistically significant improvement in ipsilateral lung V5Gy and V10Gy and in the heart V5Gy of AP plans compared to MP plans. Conclusion: The overall results of AP plans were superior to MP plans. The dose distribution in AP plans was more consistent with the distance-dose relationship described by OVH. After eliminating the interference of human factors, the AP was able to provide more stable and objective plans for radiotherapy patients.


2018 ◽  
Vol 22 ◽  
pp. 01049 ◽  
Author(s):  
Yonca Yahşi Çelen ◽  
Atilla Evcin

It is aimed to compare the values of conformity index (CI), homogeneity index (HI), monitor unit (MU) of volumetrically adjusted arthritis therapy (VMAT) plans using 10 prostate cancer patients with flattened filter (FF) and without flattening filter (FFF). In the study, treatment plans were prepared using 6 FF and 6 FFF in the Eclipse (ver.13.6) treatment planning system with Varian Trilogy Linear Accelerator. When planning was completed, CI averaged 0.87, HI averaged 0.44 and MU values were found to be 591 ± 26.8, 650 ± 33.06, respectively. When the PTV coverage, CI, HI and MU comparisons were made as a result of planning, there was no significant difference when comparing VMAT plans in FFF and FF energies. When we compare the MU values, the MU increase is seen when the straightening filter is removed. In both energy modes, good homogeneity in PTV was achieved with conventional francitation and close dose rates. No significant advantages and disadvantages of the unfiltered energy mode were observed in the assessment of plan quality in terms of CI, HI.


Sign in / Sign up

Export Citation Format

Share Document