scholarly journals Evolutionary dynamics driving continental radiations of Fagaceae forests across the Northern Hemisphere

Author(s):  
Biao-Feng Zhou ◽  
Shuai Yuan ◽  
Andrew Crowl ◽  
Yi-Ye Liang ◽  
Yong Shi ◽  
...  

Abstract Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. An unparalleled transformation of forest dynamics began with the rapid diversification of major lineages within 15 million years following the K-Pg extinction. Innovations related to seed and pollen dispersal are implicated in triggering waves of continental radiations, while fungal symbioses fortified a competitive edge underground. We detected introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, further amplifying global proliferation.

Author(s):  
S. Eryn McFarlane ◽  
Helen V. Senn ◽  
Stephanie L. Smith ◽  
Josephine M. Pemberton

AbstractClosely related species that have previously inhabited geographically separated ranges are hybridizing at an increasing rate due to human disruptions. These anthropogenic hybrid zones can be used to study reproductive isolation between species at secondary contact, including examining locus-specific rates of introgression. Introgression is expected to be heterogenous across the genome, reflecting variation in selection. Those loci that introgress especially slowly are good candidates for being involved in reproductive isolation, while those loci that introgress quickly may be involved in adaptive introgression. In the context of conservation, policy makers are especially concerned about introduced alleles moving quickly into the background of a native or endemic species, as these alleles could replace the native alleles in the population, leading to extinction via hybridization. We applied genomic cline analyses to 44997 SNPs to identify loci introgressing at excessive rates when compared to the genome wide expectation in an anthropogenic hybridizing population of red deer and sika in Kintyre Scotland. We found 11.4% of SNPs had cline centers that were significantly different from the genome wide expectation, and 17.6% had excessive rates of introgression. Based on simulations, we believe that many of these markers have diverged from average due to drift, rather than because of selection. Future work could determine the policy implications of allelic-replacement due to drift rather than selection, and could use replicate, geographically distinct hybrid zones to narrow down those loci that are indeed responding to selection in anthropogenic hybrid zones.


2017 ◽  
Vol 284 (1850) ◽  
pp. 20162414 ◽  
Author(s):  
Rachael A. Bay ◽  
Kristen Ruegg

In animals, introgression between species is often perceived as the breakdown of reproductive isolating mechanisms, but gene flow between incipient species can also represent a source for potentially beneficial alleles. Recently, genome-wide datasets have revealed clusters of differentiated loci (‘genomic islands of divergence’) that are thought to play a role in reproductive isolation and therefore have reduced gene flow. We use simulations to further examine the evolutionary forces that shape and maintain genomic islands of divergence between two subspecies of the migratory songbird, Swainson's thrush ( Catharus ustulatus ), which have come into secondary contact since the last glacial maximum. We find that, contrary to expectation, gene flow is high within islands and is highly asymmetric. In addition, patterns of nucleotide diversity at highly differentiated loci suggest selection was more frequent in a single ecotype. We propose a mechanism whereby beneficial alleles spread via selective sweeps following a post-glacial demographic expansion in one subspecies and move preferentially across the hybrid zone. We find no evidence that genomic islands are the result of divergent selection or reproductive isolation, rather our results suggest that differentiated loci both within and outside islands could provide opportunities for adaptive introgression across porous species boundaries.


2018 ◽  
Author(s):  
Yan Liang ◽  
◽  
Daniele J. Cherniak ◽  
Chenguang Sun

2021 ◽  
Vol 383 (1) ◽  
pp. 143-148
Author(s):  
Shadi Jafari ◽  
Mattias Alenius

AbstractOlfactory perception is very individualized in humans and also in Drosophila. The process that individualize olfaction is adaptation that across multiple time scales and mechanisms shape perception and olfactory-guided behaviors. Olfactory adaptation occurs both in the central nervous system and in the periphery. Central adaptation occurs at the level of the circuits that process olfactory inputs from the periphery where it can integrate inputs from other senses, metabolic states, and stress. We will here focus on the periphery and how the fast, slow, and persistent (lifelong) adaptation mechanisms in the olfactory sensory neurons individualize the Drosophila olfactory system.


2019 ◽  
Vol 11 (4) ◽  
pp. 1163 ◽  
Author(s):  
Melissa Bedinger ◽  
Lindsay Beevers ◽  
Lila Collet ◽  
Annie Visser

Climate change is a product of the Anthropocene, and the human–nature system in which we live. Effective climate change adaptation requires that we acknowledge this complexity. Theoretical literature on sustainability transitions has highlighted this and called for deeper acknowledgment of systems complexity in our research practices. Are we heeding these calls for ‘systems’ research? We used hydrohazards (floods and droughts) as an example research area to explore this question. We first distilled existing challenges for complex human–nature systems into six central concepts: Uncertainty, multiple spatial scales, multiple time scales, multimethod approaches, human–nature dimensions, and interactions. We then performed a systematic assessment of 737 articles to examine patterns in what methods are used and how these cover the complexity concepts. In general, results showed that many papers do not reference any of the complexity concepts, and no existing approach addresses all six. We used the detailed results to guide advancement from theoretical calls for action to specific next steps. Future research priorities include the development of methods for consideration of multiple hazards; for the study of interactions, particularly in linking the short- to medium-term time scales; to reduce data-intensivity; and to better integrate bottom–up and top–down approaches in a way that connects local context with higher-level decision-making. Overall this paper serves to build a shared conceptualisation of human–nature system complexity, map current practice, and navigate a complexity-smart trajectory for future research.


2021 ◽  
Vol 40 (9) ◽  
pp. 2139-2154
Author(s):  
Caroline E. Weibull ◽  
Paul C. Lambert ◽  
Sandra Eloranta ◽  
Therese M. L. Andersson ◽  
Paul W. Dickman ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1392
Author(s):  
David Gallina ◽  
G. M. Pastor

Structural disorder has been shown to be responsible for profound changes of the interaction-energy landscapes and collective dynamics of two-dimensional (2D) magnetic nanostructures. Weakly-disordered 2D ensembles have a few particularly stable magnetic configurations with large basins of attraction from which the higher-energy metastable configurations are separated by only small downward barriers. In contrast, strongly-disordered ensembles have rough energy landscapes with a large number of low-energy local minima separated by relatively large energy barriers. Consequently, the former show good-structure-seeker behavior with an unhindered relaxation dynamics that is funnelled towards the global minimum, whereas the latter show a time evolution involving multiple time scales and trapping which is reminiscent of glasses. Although these general trends have been clearly established, a detailed assessment of the extent of these effects in specific nanostructure realizations remains elusive. The present study quantifies the disorder-induced changes in the interaction-energy landscape of two-dimensional dipole-coupled magnetic nanoparticles as a function of the magnetic configuration of the ensembles. Representative examples of weakly-disordered square-lattice arrangements, showing good structure-seeker behavior, and of strongly-disordered arrangements, showing spin-glass-like behavior, are considered. The topology of the kinetic networks of metastable magnetic configurations is analyzed. The consequences of disorder on the morphology of the interaction-energy landscapes are revealed by contrasting the corresponding disconnectivity graphs. The correlations between the characteristics of the energy landscapes and the Markovian dynamics of the various magnetic nanostructures are quantified by calculating the field-free relaxation time evolution after either magnetic saturation or thermal quenching and by comparing them with the corresponding averages over a large number of structural arrangements. Common trends and system-specific features are identified and discussed.


Sign in / Sign up

Export Citation Format

Share Document