GENERAL PURPOSE SATELLITE COMPUTER PROGRAM DESCRIPTIONS, MILESTONE 11, 5-LEVEL PAPER TAPE DATA READ (PT)

1963 ◽  
Author(s):  
C. J. Zubris

1991 ◽  
Vol 45 (10) ◽  
pp. 1739-1745
Author(s):  
Min J. Yang ◽  
Paul W. Yang

A computerized infrared interpreter has been developed on an IBM personal computer (PC) running under the Microsoft disk operating system (DOS). Based on the original Merck Sharp & Dhome Research Laboratory Program for the Analysis of InfRared Spectra (PAIRS), this infrared interpreter, PC PAIRS+, is capable of analyzing infrared spectra measured from a wide variety of spectrophotometers. Modifications to PAIRS now allow the application of both artificial intelligence and library searching techniques in the program. A new algorithm has been devised to combine the results from the library searching and the PAIRS program to enhance the dependability of interpretational data. The increased capability of this infrared interpreter along with its applicability on a personal computer results in a powerful, general-purpose, and easy-to-use infrared interpretation system. Applications of PC PAIRS+ on petrochemical samples are described.



2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Aylin Ece Kayabekir

The usage of computer software in civil engineering has expanded in last decades. Many general-purpose and special-purpose commercial programs perform a very important function, especially at the design stage. In this study, a computer program is introduced for the analysis and design of the axial symmetric cylindrical wall considering the dome effects. Analysis processes are carried out according to Flexibility theory with long wall assumption and during the reinforced concrete (RC) design of the wall, ACI 318-Building code requirements for structural concrete are considered. In numerical investigation, the effects of the dome properties (thickness and height) on the analysis and design of the wall are investigated by performing a totally 72 case analyzes. These cases include different support condition at bottom of the wall, wall heights, dome thicknesses and heights. According to analysis results, it is concluded that effects of dome thickness and heights on the wall on the wall are very limited.





1971 ◽  
Vol 28 (8) ◽  
pp. 1196-1197 ◽  
Author(s):  
K. R. Scott

A method for monitoring fish tank oxygen concentrations at 10-min intervals is described. The millivolt output from a temperature-compensated oxygen meter is connected to a clocked digital datalogger system having a perforated paper tape output. Results from two widely different sets of operating conditions are analysed and automatically plotted using a prewritten computer program.



1980 ◽  
Vol 24 ◽  
pp. 239-243
Author(s):  
O. W. Marks ◽  
D. K. Smith ◽  
M. D. Chris

Separating overlapped peaks is a part of many x-ray diffraction analyses, for example, polymer crystallinity. Natta [1] defined a method for polypropylene in 1957. His method was computerized at the Hercules Research Center in 1960 with an automatic “curve follower” which punched paper tape for the computer. A later method deviated fTom Natta's method by approximating the amorphous curve with a fixed shape and a height chosen to best fit the diffraction data from 2θ = 7.5 through 10. degrees. Neither of these methods worked on “smectic” polymer samples, i.e., composed of very small crystallites. Also, a different computer program was used for each different polymer, so a general purpose computer program was developed using a peak profile method. This method has been used en polymer mixtures and copolymers of ethylene, propylene, and butene; and on cellulose, modified cellulose, and catalysts. The selection of a profile function is discussed in the next section. In later sections, the background, the fitting procedure, and computer input and output are discussed.



Author(s):  
Behrooz Fallahi ◽  
Andrew Behnke

Analysis of contact points between wheel and rail during the wheel climb is of interest to railroad application engineers. In this study the climb maneuver of a wheelset is modeled in a general purpose multi-body system computer program. This model then is used to generate the contact data for a climbing wheelset. A graphical user interface is developed which uses this contact data and generates several contact points charts. In developing the graphical user interface, mouse and keyboard events as well as other controls are used to make the interface interactive and intuitive.



Sign in / Sign up

Export Citation Format

Share Document