Test Results Report and Technology Development Report HLH/ATC Compliant Roller Bearing Development Program

1972 ◽  
Author(s):  
Jr Lenski ◽  
Joseph W.
2021 ◽  
Vol 152 (A3) ◽  
Author(s):  
Ch Suryanarayana ◽  
M Nageswara Rao ◽  
B Suryanarayana ◽  
K Ramji

A Pumpjet (PJP) was designed for an underwater body (UWB) with an axi-symmetric configuration as part of a technology development program for design and development of pumpjet. Its propulsive and cavitation performances were predicted through CFD study. The propulsor design was evaluated for its propulsion characteristics through model tests conducted in a Wind Tunnel. In the concluding part of the study, evaluation of the cavitation performance of the pumpjet was undertaken in a Cavitation Tunnel (CT). In order to assess the cavitation free operational speeds and depths of the vehicle with respect to pumpjet, cavitation tests of the PJP were carried out in behind condition at CT to determine the cavitation inception numbers for rotor, stator and cowl. The model test results obtained were corrected for full scale Reynolds number and subsequently analyzed for cavitation inception speeds at different operating depths. This entire exercise facilitated the development of an innovative testing technique and a special test setup for finding cavitation performance of pumpjet propulsor. The technique was evaluated by comparative corroboration of inception position and depth obtained from CFD analysis. From the model tests it was also found that the cavitation inception of the rotor takes place on the tip face side at higher advance ratios and cavitation shifts towards the suction side as the shaft rotation rate increases whereas the stator and cowl are free from any cavitation.


Author(s):  
Takeshi Yamamoto ◽  
Kazuo Shimodaira ◽  
Seiji Yoshida ◽  
Yoji Kurosawa

The Japan Aerospace Exploration Agency (JAXA) is conducting research and development on aircraft engine technologies to reduce environmental impact for the Technology Development Project for Clean Engines (TechCLEAN). As a part of the project, combustion technologies have been developed with an aggressive target that is an 80% reduction over the NOx threshold of the International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP)/4 standard. A staged fuel nozzle with a pilot mixer and a main mixer was developed and tested using a single-sector combustor under the target engine's landing and takeoff (LTO) cycle conditions with a rated output of 40 kN and an overall pressure ratio of 25.8. The test results showed a 77% reduction over the CAEP/4 NOx standard. However, the reduction in smoke at thrust conditions higher than the 30% MTO condition and of CO emission at thrust conditions lower than the 85% MTO condition are necessary. In the present study, an additional fuel burner was designed and tested with the staged fuel nozzle in a single-sector combustor to control emissions. The test results show that the combustor enables an 82% reduction in NOx emissions relative to the ICAO CAEP/4 standard and a drastic reduction in smoke and CO emissions.


Author(s):  
Hirotake Kobayashi ◽  
Tetsuo Tatsumi ◽  
Takashi Nakashima ◽  
Isashi Takehara ◽  
Yoshihiro Ichikawa

In Japan, from the point of view of energy saving and environmental protection, a 300kW Ceramic Gas Turbine (CGT) Research and Development program started in 1988 and is still continuing as a part of “the New Sunshine Project” promoted by the Ministry of International Trade and Industry (MITT). The final target of the program is to achieve 42% thermal efficiency at 1350°C of turbine inlet temperature (TIT) and to keep NOx emissions below present national regulations. Under contract to the New Energy and Industrial Technology Development Organization (NEDO), Kawasaki Heavy Industries, Ltd. (KHI) has been developing the CGT302 with Kyocera Corporation and Sumitomo Precision Products Co., Ltd. By the end of the fiscal year 1996, the CGT302 achieved 37.0% thermal efficiency at 1280°C of TIT. In 1997, TIT reached 1350°C and a durability operation for 20 hours at 1350°C was conducted successfully. Also fairly low NOx was proved at 1300°C of TIT. In January 1998, the CGT302 has achieved 37.4% thermal efficiency at 1250°C TIT. In this paper, we will describe our approaches to the target performance of the CGT302 and current status.


1988 ◽  
Vol 110 (4) ◽  
pp. 670-676
Author(s):  
R. R. Judkins ◽  
R. A. Bradley

The Advanced Research and Technology Development (AR&TD) Fossil Energy Materials Program is a multifaceted materials research and development program sponsored by the Office of Fossil Energy of the U.S. Department of Energy. The program is administered by the Office of Technical Coordination. In 1979, the Office of Fossil Energy assigned responsibilities for this program to the DOE Oak Ridge Operations Office (ORO) as the lead field office and Oak Ridge National Laboratory (ORNL) as the lead national laboratory. Technical activities on the program are divided into three research thrust areas: structural ceramic composites, alloy development and mechanical properties, and corrosion and erosion of alloys. In addition, assessments and technology transfer are included in a fourth thrust area. This paper provides information on the structure of the program and summarizes some of the major research activities.


Sign in / Sign up

Export Citation Format

Share Document