Combustion and Micro-Explosion of Water/Oil Emulsions in High Pressure Environments.

1985 ◽  
Author(s):  
C. K. Law
Keyword(s):  
Author(s):  
Paulo H. de Lima Silva ◽  
Mônica F. Naccache ◽  
Paulo R. de Souza Mendes ◽  
Adriana Teixeira ◽  
Leandro S. Valim

One of the main issues in the area of drilling and production in deep and ultra-deep water in the oil industry is the formation of natural gas hydrates. Hydrates are crystalline structures resembling ice, which are usually formed in conditions of high pressure and low temperature. Once these structures are formed, they can grow and agglomerate, forming plugs that can eventually completely or partially block the production lines, causing huge financial losses. To predict flow behavior of these fluids inside the production lines, it is necessary to understand their mechanical behavior. This work analyzes the rheological behavior of hydrates slurries formed by a mixture of water and Tetrahydrofuran (THF) under high pressure and low temperature conditions, close to the ones found in deep water oil exploration. The THF hydrates form similar structures as the hydrates originally formed in the water-in-oil emulsions in the presence of natural gas, at extreme conditions of high pressure and low temperature. The experiments revealed some important issues that need to be taken into account in the rheological measurements. The results obtained show that the hydrate slurry viscosity increases with pressure. Oscillatory tests showed that elasticity and yield stress also increase with pressure.


2014 ◽  
Vol 53 (17) ◽  
pp. 6998-7007 ◽  
Author(s):  
Eric B. Webb ◽  
Carolyn A. Koh ◽  
Matthew W. Liberatore

2012 ◽  
Vol 26 (6) ◽  
pp. 3504-3509 ◽  
Author(s):  
Eric B. Webb ◽  
Patrick J. Rensing ◽  
Carolyn A. Koh ◽  
E. Dendy Sloan ◽  
Amadeu K. Sum ◽  
...  
Keyword(s):  

2016 ◽  
Vol 19 (04) ◽  
pp. 664-672 ◽  
Author(s):  
M.. Sun ◽  
K.. Mogensen ◽  
M.. Bennetzen ◽  
A.. Firoozabadi

Summary Waterflooding for oil displacement becomes a challenge when water-in-oil (W/O) emulsion forms upon contact of injected water with oil in the porous media. We have recently reported very-high pressure drops and high pressure fluctuations for a number of crudes in waterflooding. In this work, we address the challenge by adding a small amount of a demulsifier in the injected water. The stability of W/O emulsion is affected by many factors, including oil chemistry, brine chemistry, and temperature. We find that the W/O emulsion formation may correlate closely to the low total acid number (TAN). In this work, we report the effectiveness of a demulsifier in significant reduction of pressure drop and elimination of pressure-drop fluctuations. The demulsifier can be dispersed in brine or water, and can be carried by injection fluid as an additive for improved oil recovery. Both micromodel observations and coreflooding results show that W/O-emulsion formation is avoided when 100 ppm demulsifier is injected in the carrier brine. Results also show that there is an increase in oil recovery.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4020
Author(s):  
Selene Yadira Gonzalez Toledo ◽  
Jianping Wu

Polysaccharides can form interfacial complexes with proteins to form emulsions with enhanced stability. We assessed the effect of adding gum guar or gum arabic to egg yolk/fish oil emulsions. The emulsions were produced using simple or high-pressure homogenization, stored for up to 10 days at 45 °C, and characterized for their particle size and distribution, viscosity, encapsulation efficiency, oxidative stability, and cytotoxicity. Emulsions containing gum guar and/or triglycerides had the highest viscosity. There was no significant difference in the encapsulation efficiency of emulsions regardless of the polysaccharide used. However, emulsions containing gum arabic displayed a bridging flocculation effect, resulting in less stability over time compared to those using gum guar. Emulsions produced using high-pressure homogenization displayed a narrower size distribution and higher stability. The formation of peroxides and propanal was lower in emulsions containing gum guar and was attributed to the surface oil. No significant toxicity toward Caco-2 cells was found from the emulsions over time. On the other hand, after 10 days of storage, nonencapsulated fish oil reduced the cell viability to about 80%. The results showed that gum guar can increase the particle stability of egg yolk/fish oil emulsions and decrease the oxidation rate of omega-3 fatty acids.


Sign in / Sign up

Export Citation Format

Share Document