Fundamental Studies of Molecule-Surface Encounters Relevant to Molecular Adsorption, Size and Chemically Selective Collection, and Trace Identification/C and L (CBT)

2011 ◽  
Author(s):  
Steven J. Sibener
Author(s):  
J.A. Panitz

The first few atomic layers of a solid can form a barrier between its interior and an often hostile environment. Although adsorption at the vacuum-solid interface has been studied in great detail, little is known about adsorption at the liquid-solid interface. Adsorption at a liquid-solid interface is of intrinsic interest, and is of technological importance because it provides a way to coat a surface with monolayer or multilayer structures. A pinhole free monolayer (with a reasonable dielectric constant) could lead to the development of nanoscale capacitors with unique characteristics and lithographic resists that surpass the resolution of their conventional counterparts. Chemically selective adsorption is of particular interest because it can be used to passivate a surface from external modification or change the wear and the lubrication properties of a surface to reflect new and useful properties. Immunochemical adsorption could be used to fabricate novel molecular electronic devices or to construct small, “smart”, unobtrusive sensors with the potential to detect a wide variety of preselected species at the molecular level. These might include a particular carcinogen in the environment, a specific type of explosive, a chemical agent, a virus, or even a tumor in the human body.


2014 ◽  
Vol 9 (Supplement 1) ◽  
pp. 43-54 ◽  
Author(s):  
Csaba Leitol

Resources ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 72
Author(s):  
Gabriela Jarrín Jácome ◽  
María Fernanda Godoy León ◽  
Rodrigo A. F. Alvarenga ◽  
Jo Dewulf

Aluminium is a metal of high economic importance for the European Union (EU), presenting unique properties (e.g., light weight and high corrosion resistance) and with applications in important sectors (e.g., transportation, construction and packaging). It is also known for its high recyclability potential, but relevant losses occur in its life cycle, compromising the amount of aluminium available for secondary production. A novel methodology that allows the identification of these losses and their impact on the aluminium flows in society is the MaTrace model. The objective of this article is to perform a dMFA of the secondary production of aluminium in the EU technosphere using the modified version of MaTrace, in order to estimate flows of the metal embedded in 12 product categories. Twelve scenarios were built in order to assess the impact of changes in policies, demand and technology. The flows were forecasted for a period of 25 years, starting in 2018. The results of the baseline scenario show that after 25 years, 24% of the initial material remains in use, 4% is hoarded by users, 10% has been exported and 61% has been physically lost. The main contributor to the losses is the non-selective collection of end-of-life products. The results of the different scenarios show that by increasing the collection-to-recycling rates of the 12 product categories, the aluminium that stays in use increase up to 32.8%, reaffirming that one way to keep the material in use is to improve the collection-to-recycling schemes in the EU.


Author(s):  
Nanqi Bao ◽  
Jake Gold ◽  
Tibor Szilvasi ◽  
Huaizhe Yu ◽  
Robert Twieg ◽  
...  

Computational methods can provide first-principles insights into the thermochemistry and kinetics of reactions at interfaces, but this capability has not been widely leveraged to design soft materials that respond selectively...


Sign in / Sign up

Export Citation Format

Share Document