scholarly journals Seasonal variations of locomotor activity rhythms in melatonin-proficient and -deficient mice under seminatural outdoor conditions

2021 ◽  
Author(s):  
◽  
Joshua Metzger

Locomotor activity patterns of laboratory mice are widely used to analyze circadian mechanisms, but most investigations have been performed under standardized laboratory conditions. Outdoors, animals are exposed to daily changes in photoperiod and other abiotic cues that might influence their circadian system. To investigate how the locomotor activity patterns under outdoor conditions compare to controlled laboratory conditions, we placed 2 laboratory mouse strains (melatonin-deficient C57Bl and melatonin-proficient C3H) in the garden of the Dr. Senckenbergische Anatomie in Frankfurt am Main. The mice were kept singly in cages equipped with an infrared locomotion detector, a hiding box, nesting material, and with food and water ad libitum. The locomotor activity of each mouse was recorded for 1 year, together with data on ambient temperature, light, and humidity. Chronotype, chronotype stability, total daily activity, duration of the activity period, and daily diurnality indices were determined from the actograms. C3H mice showed clear seasonal differences in the chronotype, its stability, the total daily activity, and the duration of the activity period. These pronounced seasonal differences were not observed in the C57Bl. In both strains, the onset of the main activity period was mainly determined by the evening dusk, whereas the offset was influenced by the ambient temperature. The actograms did not reveal infra-, ultradian, or lunar rhythms or a weekday/weekend pattern. Under outdoor conditions, the 2 strains retained their nocturnal locomotor identity as observed in the laboratory. Our results indicate that the chronotype displays a seasonal plasticity that may depend on the melatoninergic system. Photoperiod and ambient temperature are the most potent abiotic entraining cues. The timing of the evening dusk mainly affects the onset of the activity period; the ambient temperature during this period influences the latter’s duration. Humidity, overall light intensities, and human activities do not affect the locomotor behavior.

2019 ◽  
Vol 35 (1) ◽  
pp. 58-71 ◽  
Author(s):  
Joshua Metzger ◽  
Helmut Wicht ◽  
Horst-Werner Korf ◽  
Martina Pfeffer

Locomotor activity patterns of laboratory mice are widely used to analyze circadian mechanisms, but most investigations have been performed under standardized laboratory conditions. Outdoors, animals are exposed to daily changes in photoperiod and other abiotic cues that might influence their circadian system. To investigate how the locomotor activity patterns under outdoor conditions compare to controlled laboratory conditions, we placed 2 laboratory mouse strains (melatonin-deficient C57Bl and melatonin-proficient C3H) in the garden of the Dr. Senckenbergische Anatomie in Frankfurt am Main. The mice were kept singly in cages equipped with an infrared locomotion detector, a hiding box, nesting material, and with food and water ad libitum. The locomotor activity of each mouse was recorded for 1 year, together with data on ambient temperature, light, and humidity. Chronotype, chronotype stability, total daily activity, duration of the activity period, and daily diurnality indices were determined from the actograms. C3H mice showed clear seasonal differences in the chronotype, its stability, the total daily activity, and the duration of the activity period. These pronounced seasonal differences were not observed in the C57Bl. In both strains, the onset of the main activity period was mainly determined by the evening dusk, whereas the offset was influenced by the ambient temperature. The actograms did not reveal infra-, ultradian, or lunar rhythms or a weekday/weekend pattern. Under outdoor conditions, the 2 strains retained their nocturnal locomotor identity as observed in the laboratory. Our results indicate that the chronotype displays a seasonal plasticity that may depend on the melatoninergic system. Photoperiod and ambient temperature are the most potent abiotic entraining cues. The timing of the evening dusk mainly affects the onset of the activity period; the ambient temperature during this period influences the latter’s duration. Humidity, overall light intensities, and human activities do not affect the locomotor behavior.


2003 ◽  
Vol 63 (3) ◽  
pp. 537-544 ◽  
Author(s):  
A. Turra ◽  
M. R. Denadai

This study describes the daily activity in a simulated high tide situation of four species of hermit crabs (Pagurus criniticornis, Clibanarius antillensis, C. sclopetarius, and C. vittatus) that coexist in an intertidal flat in southeastern Brazil. Observations were done in two-hour intervals during two subsequent days (48 h) in three replicate pools with thirty crabs each. Among species (between and within genera) there was an evident variation in activity patterns, of which three could be distinguished. The circadian activity patterns of C. antillensis and C. vittatus could be characterized as evening and nocturnal, with resting peaks during the morning and afternoon. The circadian activity pattern of C. sclopetarius was characterized by two marked peaks of inactivity, corresponding to dawn and evening, which could represent an intrinsic association with the semi-lunar tidal cycles of the study area. Pagurus criniticornis showed high activity not influenced by day/night conditions during the entire observed period. These activity pattern variations of the studied hermit crabs should be taken into account in designing further experiments. More precise and accurate interspecific behavioral comparisons among species could be achieved in nocturnal experiments, the high activity period of all species.


2019 ◽  
Vol 34 (5) ◽  
pp. 463-481 ◽  
Author(s):  
Bethan Shaw ◽  
Michelle Fountain ◽  
Herman Wijnen

Understanding behavioral rhythms in a pest species can contribute to improving the efficacy of control methods targeting that pest. However, in some species, the behavioral patterns recorded in artificial conditions contrast greatly with observed wild-type behavioral rhythms. In this study, we identify the determinants of daily activity rhythms of the soft and stone fruit pest Drosophila suzukii. The impact of gender, space, social housing, temperature, light, fly morph, and the circadian clock on D. suzukii locomotor rhythms was investigated. Assays were performed under artificial laboratory conditions or more natural semifield conditions to identify how these factors affected daily locomotor behavior. Daily locomotor activity patterns collected under semifield conditions varied very little between the various sex and social condition combinations. However, in lab-based assays, individual and group-housed males often exhibited divergent activity patterns, with more prominent hyperactivity at light/dark transitions. In contrast, hyperactivity responses were suppressed under lab protocols mimicking summer conditions for groups of females and mixed-sex groups. Moreover, when environmental cues were removed, flies held in groups displayed stronger rhythmicity than individual flies. Thus, social interactions can reinforce circadian behavior and resist hyperactivity responses in D. suzukii. Fly morph appeared to have little impact on behavioral pattern, with winter and summer morph flies displaying similar activity profiles under April semifield and laboratory mimic environmental conditions. In conclusion, separate and combined effects of light, temperature, circadian clock function, and social interactions were apparent in the daily activity profiles of D. suzukii. When groups of female or mixed-sex flies were used, implementation of matching photoperiods and realistic daily temperature gradients in the lab was sufficient to re-create behavioral patterns observed in summer semifield settings. The ability to leverage lab assays to predict D. suzukii field behavior promises to be a valuable asset in improving control measures for this pest.


1971 ◽  
Vol 49 (2) ◽  
pp. 255-264 ◽  
Author(s):  
John M. Green

In its natural habitat, Oligocottus maculosus displayed a locomotor activity that is dependent primarily upon such factors as turbulence, temperature, and light. Under laboratory conditions this species exhibits a tidal rhythm of locomotor activity. The rhythm appears to be entrained directly by the tide and is not directly related to the daily field activity of O. maculosus. It is concluded that it represents the coupling of an avoidance or escape response to a biological clock.


2012 ◽  
Vol 303 (9) ◽  
pp. R890-R902 ◽  
Author(s):  
Jasmine V. Ware ◽  
O. Lynne Nelson ◽  
Charles T. Robbins ◽  
Heiko T. Jansen

Seasonal cycles of reproduction, migration, and hibernation are often synchronized to changes in daylength (photoperiod). Ecological and evolutionary pressures have resulted in physiological specializations enabling animals to occupy a particular temporal niche within the diel cycle leading to characteristic activity patterns. In this study, we characterized the annual locomotor activity of captive brown bears (Ursus arctos). Locomotor activity was observed in 18 bears of varying ages and sexes during the active (Mar-Oct) and hibernating (Nov-Feb) seasons. All bears exhibited either crepuscular or diurnal activity patterns. Estimates of activity duration (α) and synchronization to the daily light:dark cycle (phase angles) indirectly measured photoresponsiveness. α increased as daylength increased but diverged near the autumnal equinox. Phase angles varied widely between active and hibernating seasons and exhibited a clear annual rhythm. To directly test the role of photoperiod, bears were exposed to controlled photoperiod alterations. Bears failed to alter their daily activity patterns (entrain) to experimental photoperiods during the active season. In contrast, photic entrainment was evident during hibernation when the daily photocycle was shifted and when bears were exposed to a skeleton (11:1:11:1) photoperiod. To test whether entrainment to nonphotic cues superseded photic entrainment during the active season, bears were exposed to a reversed feeding regimen (dark-fed) under a natural photocycle. Activity shifted entirely to a nocturnal pattern. Thus daily activity in brown bears is highly modifiable by photoperiod and food availability in a stereotypic seasonal fashion.


1984 ◽  
Vol 5 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Elizabeth A. Pulford ◽  
Adrian Hailey ◽  
David Stubbs

AbstractDaily activity patterns of Testudo hermanni in summer are described for two sites, Alyki, a coastal heathland in Greece, and the Massif des Maures, a woodland in France. Activity was bimodal in the former and unimodal in the latter. Habitat type was thought to be more important than latitude and climate in accounting for this pattern. AtAlyki there was a sex ratio of encounters of2. 7 ♂: 1 ♀ in summer, but no differences between the sexes in daily activity pattern. In the Massif des Maures, the ratio varied through the season, from 0.5 ♂: 1 9 in June, to 2.6 ♂: 1 9 in September, suggesting seasonal differences in activity of the sexes. Population density at Alyki was 5 times greater than in the Massif des Maures, yet sighting frequency was similar. This was accounted for by the increased ease offinding active animals in the woodland from the noise they made in the leaf litter.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 290
Author(s):  
Giacomo Cremonesi ◽  
Francesco Bisi ◽  
Lorenzo Gaffi ◽  
Thet Zaw ◽  
Hla Naing ◽  
...  

The effects of human disturbance represent one of the major threats for wildlife conservation. Many studies have shown that wildlife avoids or reduces direct contact with human activities through changes in activity patterns, and by minimizing spatiotemporal overlap. In this study, we investigated the possible effects of human presence on the temporal activity of medium-to-large mammals using two areas in Myanmar that differ in the intensity of human disturbance. We monitored temporal segregation mechanisms using camera trapping data and with two statistical approaches: daily activity overlaps between humans and wildlife and circular statistics. We did not find a significant difference in overlapping activity between areas but, thanks to circular statistics, we found that some species show changes in activity patterns, suggesting temporal avoidance. We observed that the daily activity of five species differed between areas of Myanmar, likely adopting mechanisms to reduce overlap in areas highly frequented by humans. Interestingly, these species are all threatened by hunting or poaching activities, four of which have been described in literature as “cathemeral”, or species that are active through day and night. This study suggests that some species adapt their behavior, at least partially, to avoid human presence in habitats with higher anthropic occurrence and increase our knowledge on the status of medium–large mammals in a poorly studied country as Myanmar.


Sign in / Sign up

Export Citation Format

Share Document