scholarly journals CHILLING ENHANCEMENT OF ROOT REGENERATION IN APPLE CAN OCCUR WITHOUT BUDBREAK OR GROWTH OF ROOT SUCKERS

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1127G-1128
Author(s):  
Michael A. Arnold ◽  
Eric Young

After receiving 0, 600, 1200, or 1800 hr. of chilling at 5C, one-year-old Malus domestica Borkh. seedlings were given 10 sec. root dips either 10,000 ppm K-IBA solution or water control. Following chilling and IBA treatments, 20 seedlings of each combination were placed in forcing conditions of 20 ± 2C root temperatures and either 20 or 5 ± 1C shoot temperatures. Five seedlings of each treatment were harvested after 0, 7, 14, and 21 days of forcing. Five C prohibited budbreak and bark slipage for up to 21 days. Under 20C, budbreak, shoot elongation and root growth all occurred earlier, faster, and reached a higher level with increased chilling. Twenty C root and 5C shoot temperatures during forcing resulted in large increases in the growth of adventitious shoots on lateral roots, but had little effect on the formation of adventitious shoots on the tap root. K-IBA prohibited development of adventitious shoots on roots, reduced shoot elongation more so than budbreak, and increased root regeneration across chilling hours. K-IBA inhibition of adventitious shoots did not alter the overall pattern of root regeneration enhancement by chilling.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1127g-1128 ◽  
Author(s):  
Michael A. Arnold ◽  
Eric Young

After receiving 0, 600, 1200, or 1800 hr. of chilling at 5C, one-year-old Malus domestica Borkh. seedlings were given 10 sec. root dips either 10,000 ppm K-IBA solution or water control. Following chilling and IBA treatments, 20 seedlings of each combination were placed in forcing conditions of 20 ± 2C root temperatures and either 20 or 5 ± 1C shoot temperatures. Five seedlings of each treatment were harvested after 0, 7, 14, and 21 days of forcing. Five C prohibited budbreak and bark slipage for up to 21 days. Under 20C, budbreak, shoot elongation and root growth all occurred earlier, faster, and reached a higher level with increased chilling. Twenty C root and 5C shoot temperatures during forcing resulted in large increases in the growth of adventitious shoots on lateral roots, but had little effect on the formation of adventitious shoots on the tap root. K-IBA prohibited development of adventitious shoots on roots, reduced shoot elongation more so than budbreak, and increased root regeneration across chilling hours. K-IBA inhibition of adventitious shoots did not alter the overall pattern of root regeneration enhancement by chilling.


2007 ◽  
Vol 25 (4) ◽  
pp. 221-228
Author(s):  
Petra Sternberg ◽  
Daniel K. Struve

Abstract A major goal in the production of tree whips is to produce appropriately sized, well-branched liners with a crown form similar to that of a mature tree. Pruning is used to induce lateral branching. This can result in poor tree quality, reduced growth and the practice is labor intensive. An alternative to mechanical pruning, foliar Cyclanilide® (CYC) sprays at 0, 56, 1 12 and 223 ppm were applied to container grown whips to determine its effect on branching of Amelanchier; Cercis, Malus and Tilia whips. Most species responded to CYC sprays with increased lateral branching if treated during active shoot elongation. Cyclanilide® sprays of 1 12 ppm produced the greatest number of branches. Sprays at 56 ppm resulted in reduced branching (relative to 112 ppm), while sprays of 223 ppm did not increase the number of branches, relative to sprays of 112 ppm, but reduced growth. Cyclanilide® sprays reduced height growth, relative to untreated whips, but did not alter height diameter growth. Cyclanilide® foliar applications to container -grown whips during periods of active shoot elongation increased branching in one-year-old whips that normally do not branch until the second year of production. Further, the origin of lateral branching can be controlled by timing of CYC application. The results indicate that CYC foliar sprays can be an important tool in the production of one-year-old branched whips.


1973 ◽  
Vol 24 (4) ◽  
pp. 497 ◽  
Author(s):  
KC Hodgkinson

Lucerne plants (Medicogo sativa cv. Hunter River) were either frequently or infrequently cut down and subsequent differences in shoot regrowth were compared in two experiments. The first experiment demonstrated that differences in final shoot weights arose from differences developed during the first 7 days of regrowth. High level cutting (15 cm) increased the shoot yield of frequently but not of infrequently cut plants. Net uptake of both nitrogen and phosphorus was related to the growth rate of shoots until commencement of flowering, when uptake ceased for c. 15 days even though both roots and shoots continued to gain weight. Towards the end of flowering uptake of nitrogen and phosphorus recommenced and accumulation of both nutrients occurred in the tap-root and lateral roots. The relative nitrogen and phosphorus content of leaves on crown shoots was highest on day 7 and the same for frequently and infrequently cut plants. Leaves on crown and stubble shoots 7 days after high level cutting had a significantly lower relative nitrogen and phosphorus content than leaves on plants cut low. Thereafter the relative nitrogen and phosphorus content of a11 leaves declined with the greatest decline occurring after the commencement of flowering. In the second experiment early morphogenesis of the shoot population was investigated. Establishment of shoots was completed between 3 and 5 days after cutting. Higher shoot weights on infrequently cut plants were accounted for by a larger number of small shoots at the time of cutting. Relative growth rates of shoots did not appear to be influenced by prior cutting frequency. The relative nitrogen content of buds and shoot apices was low at cutting but doubled within 2 or 3 days and then declined after day 7. These results are discussed in relation to the role of 'plant factors' in shoot regrowth of lucerne.


2015 ◽  
Vol 63 (8) ◽  
pp. 679 ◽  
Author(s):  
Roberta Cristiane Ribeiro ◽  
Rodrigo Barbosa Braga Feitoza ◽  
Helena Regina Pinto Lima ◽  
Mário Geraldo de Carvalho

Studies on phenols have gained attention owing to their abundance in plants and their effects on plant development. Phenols from forage grasses may exert phytotoxicity on legume crops in intercropping systems. We aimed to identify morpho-anatomical variations in Calopogonium mucunoides Desv. roots treated with phenolic compounds. Seeds of C. mucunoides were treated with (1) distilled water (control), (2) trans-cinnamic acid, (3) a mixture of the flavonoids quercetin, rutin, kaempferol and kaempferol-3-α-rhamnoside, or (4) a combination of the flavonoid mixture and trans-cinnamic acid. After 10 days of treatment, the roots were measured, described and processed according to standard techniques in plant anatomy. In general, non-control individuals showed plant lengths decreased by 40–45%, root-tip necrosis and intense lateral root ramification. Seeds germinated in cinnamic acid presented xylem poles with a greater number of cells and a greater emission of lateral roots. In the seeds treated with flavonoids, cell division was observed in the endodermis and the pericycle, and xylem fibres went through differentiation. The combination of cinnamic acid and flavonoids led to the premature formation of fibres by the phloem. The treatments with flavonoids or cinnamic acid alone were significantly greater in root diameter (868.61 µm and 810.35 µm, respectively) than was the application of both (714.98 µm) or the control (533.76 µm). The results suggest that cinnamic acid and the tested flavonoids negatively affect the development and the root structure of C. mucunoides.


2009 ◽  
Vol 60 (1) ◽  
pp. 43 ◽  
Author(s):  
Tiernan A. O'Rourke ◽  
Tim T. Scanlon ◽  
Megan H. Ryan ◽  
Len J. Wade ◽  
Alan C. McKay ◽  
...  

Pasture decline is considered to be a serious challenge to agricultural productivity of subterranean clover across southern Australia. Root disease is a significant contributing factor to pasture decline. However, root disease assessments are generally carried out in the early part of the growing season and in areas predominantly sown to permanent pastures. For this reason, in spring 2004, a survey was undertaken to determine the severity of root disease in mature subterranean clover plants in pastures located in the wheatbelt of Western Australia. DNA-based soil assays were used to estimate population density in the soil of a variety of soil-borne pathogens known to commonly occur in the Mediterranean-type environments of southern Australia. The relationships between severity of disease on tap and lateral roots and root diameter, root length, nodulation, and total rainfall were determined. The survey showed, for the first time, that severe root disease is widespread in spring across the wheatbelt of Western Australia. There was a positive correlation between rainfall and tap root disease, and between tap root disease and average root diameter of the entire root system. Despite the high levels of root disease present across the sites, the DNA of most root disease pathogens assayed was detected in trace concentrations. Only Pythium Clade F showed high DNA concentrations in the soil. DNA concentrations in the soil, in particular for Phytophthora clandestina and Rhizoctonia solani AG 2.1 and AG 2.2, were higher in the smaller autumn sampling in 2006. This study suggests that the productivity of subterranean clover-based pastures is severely compromised by root rot diseases throughout the growing season in the wheatbelt of Western Australia.


Weed Science ◽  
1972 ◽  
Vol 20 (4) ◽  
pp. 285-289 ◽  
Author(s):  
K. Hawxby ◽  
E. Basler ◽  
P. W. Santelmann

The absorption and translocation of14C-labeled α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) and 2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione methazole from nutrient solutions of various temperatures by(Arachis hypogaeaL. ‘Starr’) seedlings were determined. The accumulation of trifluralin in roots at 24 hr after exposure to trifluralin was greatest at 21 C and decreased at higher temperatures up to 38 C. The amounts of trifluralin translocated and accumulated in hypocotyls, tops, and cotyledons were small but generally increased with temperature. The initial rate of absorption of trifluralin was greater in excised lateral root tips than in tap root tips, but there was a greater accumulation in excised tap roots at 24 hr. The initial rates of absorption were higher for excised lateral roots at high temperatures. Total absorption of trifluralin at equilibrium was not proportional to the initial rates of absorption but was highest at low (21 C) and high (38 C) temperatures for excised lateral roots. The absorption of methazole by roots and translocation to other plant parts increased linearly with temperature, and it tended to accumulate in the mature leaf tissue.


Nano LIFE ◽  
2012 ◽  
Vol 02 (04) ◽  
pp. 1250014 ◽  
Author(s):  
X. H. WANG ◽  
Q. M. HUANG ◽  
L. WANG ◽  
L. Z. WANG

One of the major limitations in producing transgenic soybeans using the agrobacterium-mediated cotyledonary-node method is low regeneration frequency. An improved highly efficient regeneration system of soybean was established herein. Cotyledonary node explants were placed in shoot initiation medium with single-wall carbon nanotube (SWNT) for adventitious shoots regeneration, and adventitious shoots were subcultured in shoot elongation medium with SWNT for shoot elongation and rooting. 40 mg/L SWNT supplemented in shoot initiation medium was found to be the optimal concentration with shoots regeneration frequency significantly increased by 21.5% compared with the control treatment, while for 4 mg/L and 400 mg/L, the increase was 4.6% and 6.5%, respectively. Faster elongation and rooting of adventitious shoots was observed in shoot elongation medium with 40 mg/L SWNT. Soybean plantlet formation frequency within the limited four weeks supplemented with 40 mg/L SWNT reached 48.4% while in the other three treatments: 4 mg/L, 400 mg/L and control, 0% were observed. These results indicate that supplement of SWNT in the soybean medium can efficiently promote adventitious shoots formation frequency, increase plantlet formation frequency and shorten the regeneration period.


1962 ◽  
Vol 53 (1) ◽  
pp. 179-192 ◽  
Author(s):  
W. A. Sands

The termites most injurious to crops and trees in West Africa are subterranean or mound-building species of the Termitidae, mainly Macrotermitinae with some Amitermitinae and Nasutitermitinae. Insecticides for their control may be applied generally to the soil, locally around the plant or directly to the colony.In investigations in Northern Nigeria, dusts containing aldrin or dieldrin were mixed with the top six inches of soil of a type commonly cultivated (a slightly humic, brown, loamy sand), exposed to weathering in the field and tested for persistence of the insecticides by bioassay at intervals, using workers of Trinervitermes ebenerianus Sjöst., a locally common surface-foraging species. The concentration of the insecticide in the soil was measured in terms of the time in days taken for 50 per cent. of the insects to be killed (T50). After 33–34 months, between one-third and one-fifth of the insecticide remained in soil originally treated with 0·5, 2 and 5 lb. active ingredient (a.i.) per acre.T. ebenerianus proved very sensitive to dieldrin; the T50 value was 1·48–4·10 days for single samples, from each of five colonies, exposed to filter paper containing 0·0018 parts per million, as compared with 10–24 days for the controls. It is suggested that general soil treatments should be used with caution until more is known of their effects on termite populations, which are important in facilitating aeration, and penetration of water, in tropical soils.Application of dieldrin emulsion, at a dose equivalent to 1 lb. a.i. divided among the planting holes for one acre (1,225), during planting of one-year-old, root-pruned seedlings of Eucalyptus camalduensis, resulted in a mean survival after 2½ years of 60 per cent. of the young trees, as compared with 17 per cent. in untreated controls. Pot-grown seedlings of Eucalyptus spp. were similarly treated at 8 oz. a.i. dieldrin per 700 pots prior to setting out in the field, when they showed very low mortality due to termites over the next 1½ years, attack only occurring where too short a pot allowed access by Macrotermes natalensis (Hav.) to the tap root. Four hundred pot-grown cacao seedlings similarly treated with 4 oz. a.i. dieldrin showed only four deaths due to termites one year after planting out. Pre-treatment of potting soil for Eucalyptus seedlings at 5–10 oz. of 2 per cent, dieldrin dust per cubic yard (sufficient for 500 pots) has given promising preliminary results.Colonies of M. natalensis, which constructs large mounds, were successfully poisoned with 2½ fl. oz. of aldrin 40 per cent, emulsifiable concentrate in six gallons of water applied through three auger holes made into the central ‘ hive ’, containing the queen cell and associated chambers. It is considered that this dose could safely be reduced.


1989 ◽  
Vol 69 (4) ◽  
pp. 1335-1346 ◽  
Author(s):  
M. CHARCHAR ◽  
J. M. KRAFT

Near-isogenic pea cultivars, differing by a single dominant gene for resistance (R) or susceptibility (S) to Fusarium oxysporum f. sp. pisi race 1 (’M410’-S, ’Vantage’-R) or race 5 (’Sundance’-S, ’Sundance II’-R), were evaluated for their response to infection. The response of resistant cultivars to each race was similar. Colonies of both races were isolated in higher numbers from tap and lateral root apices of susceptible as compared with resistant cultivars. Internal tap root and hypocotyl invasion occurred in all cultivars tested. However, lateral roots and stems of resistant cultivars were not infected as compared with susceptible lines. Surface colonization of tap and lateral roots of the resistant cultivars was significantly less than with the susceptible cultivars. Scanning electron microscopy revealed that gel-like material completely sealed off xylem elements in lateral roots, epicotyls, and aboveground stems of resistant cultivars. In contrast, intense mycelial invasion, without the formation of gels, occurred in susceptible cultivars. Conidial germination and germ-tube growth of both race 1 and race 5 were stimulated by xylem fluids from the susceptible, but not from the resistant cultivars. A resistance response based on physical containment and reduced fungal growth was evident.Key words: Fusarium wilt, host response, Pisum sativum


2001 ◽  
Vol 19 (2) ◽  
pp. 69-72
Author(s):  
M. Pardos ◽  
J.A. Pardos ◽  
G. Montero

Abstract Cork oak (Quercus suber L.) seedlings of two Iberian provenances (PA-SR and SM-Lp) were grown for one growing season in non-treated containers or in containers treated on their interior surfaces with white exterior latex paint containing 80 g CuCO3/liter. Copper carbonate-treated containers effectively prevented root deformation and decreased the amount of circled, kinked and matted roots formed at the container wall-medium interface. Root morphology was altered by the copper coating, so elongation of lateral roots contacting CuCO3-treated surfaces was more reduced than that of the tap root (82.7% vs 1.5%). These lateral roots showed higher branching frequency than roots contacting untreated container walls. CuCO3 treatment decreased root collar diameter, but did not influence seedling height, leaf area and tap root length. No sign of copper toxicity was observed in any seedling treated with CuCO3. Provenance had a significant effect on height, root collar diameter, tap root length and root weight per unit length; these results may reflect differences in growth habit of the two provenances. Other growth parameters measured were affected by a copper × provenance interaction. Seedlings of the PA-SR provenance produced less root and plant dry wt when grown in CuCO3-treated than in control containers, but shoot:root ratio was not influenced.


Sign in / Sign up

Export Citation Format

Share Document