scholarly journals HIGH TEMPERATURE RESPONSE IN BEAN -BREEDING CONSIDERATIONS

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1175G-1175
Author(s):  
David W. Davis ◽  
Karl J. Sauter

Attention has been given in recent literature to crop breeding for heat tolerance, but, as with certain other physiological traits, such as photosynthetic efficiency, practical gain has lagged. The question remains as to whether heat tolerance can be improved, and, if so, if it can most efficiently be improved by a holistic approach, as in breeding for yield following timely high temperature levels in the field environment, or whether the breeding for heat (and drought) tolerance components in the laboratory would be feasible. At issue is the identification and repeatability of key plant responses, such as cell membrane damage, heat shock protein formation, increased ethylene output and other responses, and the relevance, effectiveness and cost of screening for such traits. Results from our laboratory, and the work of others, will be reviewed.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1175g-1175
Author(s):  
David W. Davis ◽  
Karl J. Sauter

Attention has been given in recent literature to crop breeding for heat tolerance, but, as with certain other physiological traits, such as photosynthetic efficiency, practical gain has lagged. The question remains as to whether heat tolerance can be improved, and, if so, if it can most efficiently be improved by a holistic approach, as in breeding for yield following timely high temperature levels in the field environment, or whether the breeding for heat (and drought) tolerance components in the laboratory would be feasible. At issue is the identification and repeatability of key plant responses, such as cell membrane damage, heat shock protein formation, increased ethylene output and other responses, and the relevance, effectiveness and cost of screening for such traits. Results from our laboratory, and the work of others, will be reviewed.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 376
Author(s):  
Elena Benavente ◽  
Estela Giménez

After a basic description of the different sets of genetic tools and genomic approaches most relevant for modern crop breeding (e. g., QTL mapping, GWAS and genomic selection; transcriptomics, qPCR and RNA-seq; transgenesis and gene editing), this review paper describes their history and the main achievements in rice, wheat and maize research, with a further focus on crop traits related to the improvement of plant responses to face major abiotic constrains, including nutritional limitations, drought and heat tolerance, and nitrogen-use efficiency (NUE). Remarkable differences have been evidenced regarding the timing and degree of development of some genetic approaches among these major crops. The underlying reasons related to their distinct genome complexity, are also considered. Based on bibliographic records, drought tolerance and related topics (i.e., water-use efficiency) are by far the most abundantly addressed by molecular tools among the breeding objectives considered. Heat tolerance is usually more relevant than NUE in rice and wheat, while the opposite is true for maize.


Alloy Digest ◽  
1954 ◽  
Vol 3 (5) ◽  

Abstract Nimonic 80 and Nimonic 80A are nickel-base alloys containing a high percentage of chromium, with aluminum and titanium as hardening agents. They are made to the same compositional specification, but Nimonic 80A is produced to meet a more severe requirement with respect to resistance to creep when stressed at higher temperatures than Nimonic 80. Both alloys show high strength at high temperature levels and are very resistant to scaling, oxidation, heat and corrosion. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-10. Producer or source: Henry Wiggin & Company Ltd.


2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


2021 ◽  
Vol 112 (2) ◽  
pp. 155-164
Author(s):  
Suzanne Edmands

Abstract Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males. For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1254 ◽  
Author(s):  
Xi Chen ◽  
Dong Chen ◽  
Linyuan Huang ◽  
Xiaoling Chen ◽  
Mei Zhou ◽  
...  

The peptides from the ranacyclin family share similar active disulphide loop with plant-derived Bowman–Birk type inhibitors, some of which have the dual activities of trypsin inhibition and antimicrobial. Herein, a novel Bowman–Birk type trypsin inhibitor of the ranacyclin family was identified from the skin secretion of broad-folded frog (Sylvirana latouchii) by molecular cloning method and named as SL-BBI. After chemical synthesis, it was proved to be a potent inhibitor of trypsin with a Ki value of 230.5 nM and showed weak antimicrobial activity against tested microorganisms. Modified analogue K-SL maintains the original inhibitory activity with a Ki value of 77.27 nM while enhancing the antimicrobial activity. After the substitution of active P1 site to phenylalanine and P2′ site to isoleucine, F-SL regenerated its inhibitory activity on chymotrypsin with a Ki value of 309.3 nM and exhibited antiproliferative effects on PC-3, MCF-7 and a series of non-small cell lung cancer cell lines without cell membrane damage. The affinity of F-SL for the β subunits in the yeast 20S proteasome showed by molecular docking simulations enriched the understanding of the possible action mode of Bowman–Birk type inhibitors. Further mechanistic studies have shown that F-SL can activate caspase 3/7 in H157 cells and induce apoptosis, which means it has the potential to become an anticancer agent.


Sign in / Sign up

Export Citation Format

Share Document