Plant responses to high temperature: a view from pre-mRNA alternative splicing

2021 ◽  
Vol 105 (6) ◽  
pp. 575-583
Author(s):  
Jingya Lin ◽  
Ziqiang Zhu
Author(s):  
Kamrun Nahar ◽  
Mirza Hasanuzzaman ◽  
Kamal Uddin Ahamed ◽  
Khalid Rehman Hakeem ◽  
Munir Ozturk ◽  
...  

2021 ◽  
Author(s):  
Alejandro Morales ◽  
Hugo J de Boer ◽  
Jacob C Douma ◽  
Saskia Elsen ◽  
Sophie Engels ◽  
...  

Plant responses to abiotic stresses are complex and dynamic, and involve changes in different traits, either as the direct consequence of the stress, or as an active acclimatory response. Abiotic stresses frequently occur simultaneously or in succession, rather than in isolation. Despite this, most studies have focused on a single stress and single or few plant traits. To address this gap, our study comprehensively and categorically quantified the individual and combined effects of three major abiotic stresses associated with climate change (flooding, progressive drought and high temperature) on 12 phenotypic traits related to morphology, development, growth and fitness, at different developmental stages in four Arabidopsis thaliana accessions. Combined sub-lethal stresses were applied either simultaneously (high temperature and drought) or sequentially (flooding followed by drought). In total, we analyzed the phenotypic responses of 1782 individuals across these stresses and different developmental stages. Overall, abiotic stresses and their combinations resulted in distinct patterns of effects across the traits analyzed, with both quantitative and qualitative differences across accessions. Stress combinations had additive effects on some traits, whereas clear positive and negative interactions were observed for other traits: 9 out of 12 traits for high temperature and drought, 6 out of 12 traits for post-submergence and drought showed significant interactions. In many cases where the stresses interacted, the strength of interactions varied across accessions. Hence, our results indicated a general pattern of response in most phenotypic traits to the different stresses and stress combinations, but it also indicated a natural genetic variation in the strength of these responses. Overall, our study provides a rich characterization of trait responses of Arabidopsis plants to sub-lethal abiotic stresses at the phenotypic level and can serve as starting point for further in-depth physiological research and plant modelling efforts.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2644
Author(s):  
Yin Luo ◽  
Yanyang Xie ◽  
Weiqiang Li ◽  
Maohuan Wei ◽  
Tian Dai ◽  
...  

High temperature stress seriously limits the yield and quality of wheat. Trehalose, a non-reducing disaccharide, has been shown involved in regulating plant responses to a variety of environmental stresses. This study aimed to explore the molecular regulatory network of exogenous trehalose to improve wheat heat tolerance through RNA-sequencing technology and physiological determination. The physiological data and RNA-seq showed that trehalose reduced malondialdehyde content and relative conductivity in wheat roots, and affecting the phenylpropane biosynthesis, starch and sucrose metabolism, glutathione metabolism, and other pathways. Our results showed that exogenous trehalose alleviates the oxidative damage caused by high temperature, coordinating the effect of wheat on heat stress by re-encoding the overall gene expression, but two wheat varieties showed different responses to high temperature stress after trehalose pretreatment. This study preliminarily revealed the effect of trehalose on gene expression regulation of wheat roots under high temperature stress, which provided a reference for the study of trehalose.


2020 ◽  
Vol 25 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Latif Ahmad Peer ◽  
Zahoor A. Dar ◽  
Aijaz A. Lone ◽  
Mohd Yaqub Bhat ◽  
Nusrat Ahamad

2003 ◽  
Vol 371 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Gui-Ying NIE ◽  
Anne HAMPTON ◽  
Ying LI ◽  
Jock K. FINDLAY ◽  
Lois A. SALAMONSEN

In the present study, we identified an additional member of the human high-temperature requirement factor A (HtrA) protein family, called pregnancy-related serine protease or HtrA3, which was most highly expressed in the heart and placenta. We cloned the full-length sequences of two forms (long and short) of human HtrA3 mRNA, located the gene on chromosome 4p16.1, determined its genomic structure and revealed how the two mRNA variants are produced through alternative splicing. The alternative splicing was also verified by Northern blotting. Four distinct domains were found for the long form HtrA3 protein: (i) an insulin/insulin-like growth factor binding domain, (ii) a Kazal-type S protease-inhibitor domain, (iii) a trypsin protease domain and (iv) a PDZ domain. The short form is identical to the long form except it lacks the PDZ domain. Comparison of all members of human HtrA proteins, including their isoforms, suggests that both isoforms of HtrA3 represent active serine proteases, that they may have different substrate specificities and that HtrA3 may have similar functions to HtrA1. All three HtrA family members showed very different mRNA-expression patterns in 76 human tissues, indicating a specific function for each. Interestingly, both HtrA1 and HtrA3 are highly expressed in the placenta. Identification of the tissue-specific function of each HtrA family member is clearly of importance.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 685
Author(s):  
Rashid Hussain ◽  
Choudhary Muhammad Ayyub ◽  
Muhammad Rashid Shaheen ◽  
Sahar Rashid ◽  
Muhammad Nafees ◽  
...  

Keeping in view the yield losses instigated by heat stress in several crops, we carried out an experiment to explore the curative effect of exogenous applications of proline on the morpho-physiological, biochemical, and water-related attributes of okra genotypes under high-temperature stress (controlled conditions). Four contrasting genotypes C1, C2, C3, and C4 heat tolerant and heat sensitive genotypes were selected from a diverse panel of okra genotypes (n = 100) to examine plant responses to high-temperature stress and exogenous application of proline. Four-week-old seedlings were subjected to heat stress by gradually increasing the temperature of a growth chamber from 28/22 °C to 45/35 °C (day/night) and sprayed with an optimized proline concentration 2.5 mM. The experiment consisted of a factorial arrangement of treatments in a completely randomized design. The results showed that there were maximum increases in shoot length (32.7%), root length (58.9%), and shoot fresh (85.7%). The quantities of leaves per plant were increased by 52.9%, 123.6%, 82.5%, and 62.2% in C1, C2, C3, and C4 after proline application. On the other hand, only root fresh weight decreased in all genotypes after proline application by 23.1%, 20%, 266.7%, and 280.8% (C1, C2, C3, C4). A lower leaf temperature of 27.72 °C, minimum transpiration of 3.29 mmol m−2 s−1, maximum photosynthesis of 3.91 μmol m−2 s−1, and a maximum water use efficiency of 1.20 μmol CO2 mmol H2O were recorded in the genotypes C2, C1, C3, and C4, respectively. The highest enzymatic activity of superoxide dismutase, peroxidase and catalase were 14.88, 0.31, and 0.15 U mg-protein in C2, C1, and C3, respectively. Maximum leaf proline, glycinebetaine, total free amino acids, and chlorophyll content 3.46 mg g−1, 4.02 mg g−1, 3.46 mg g−1, and 46.89 (in C2), respectively, due to foliar applications of proline. Another important finding was that heat tolerance in okra was highly linked highly linked to genotypes’ genetic potential, having more water use efficiency, enzymatic activities, and physio-biochemical attributes under the foliar applications of proline.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2439
Author(s):  
Anna Zioutopoulou ◽  
Eirini Patitaki ◽  
Tianyuan Xu ◽  
Eirini Kaiserli

Integration of temperature cues is crucial for plant survival and adaptation. Global warming is a prevalent issue, especially in modern agriculture, since the global rise in average temperature is expected to impact crop productivity worldwide. Hence, better understanding of the mechanisms by which plants respond to warmer temperatures is very important. This review focuses on the epigenetic mechanisms implicated in plant responses to high temperature and distinguishes the different epigenetic events that occur at warmer average temperatures, leading to thermomorphogenic responses, or subjected to extreme warm temperatures, leading to heat stress.


2021 ◽  
Vol 22 (22) ◽  
pp. 12197
Author(s):  
Nengxu Sun ◽  
Xiangjiu Kong ◽  
Yueyan Liu ◽  
Tingting Gong ◽  
Xiaoyong Gu ◽  
...  

Salicylic acid (SA) and jasmonic acid (JA) are essential plant immune hormones, which could induce plant resistance to multiple pathogens. However, whether common components are employed by both SA and JA to induce defense is largely unknown. In this study, we found that the enhanced disease susceptibility 8 (EDS8) mutant was compromised in plant defenses to hemibiotrophic pathogen Pseudomonas syringae pv. maculicola ES4326 and necrotrophic pathogen Botrytis cinerea, and was deficient in plant responses to both SA and JA. The EDS8 was identified to be THO1, which encodes a subunit of the THO/TREX complex, by using mapping-by-sequencing. To check whether the EDS8 itself or the THO/TREX complex mediates SA and JA signaling, the mutant of another subunit of the THO/TREX complex, THO3, was tested. THO3 mutation reduced both SA and JA induced defenses, indicating that the THO/TREX complex is critical for plant responses to these two hormones. We further proved that the THO/TREX interacting protein SERRATE, a factor regulating alternative splicing (AS), was involved in plant responses to SA and JA. Thus, the AS events in the eds8 mutant after SA or JA treatment were determined, and we found that the SA and JA induced different alternative splicing events were majorly modulated by EDS8. In summary, our study proves that the THO/TREX complex active in AS is involved in both SA and JA induced plant defenses.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2211
Author(s):  
Zhuoya Cheng ◽  
Yuting Luan ◽  
Jiasong Meng ◽  
Jing Sun ◽  
Jun Tao ◽  
...  

Plant growth and development are closely related to the environment, and high-temperature stress is an important environmental factor that affects these processes. WRKY transcription factors (TFs) play important roles in plant responses to high-temperature stress. WRKY TFs can bind to the W-box cis-acting elements of target gene promoters, thereby regulating the expression of multiple types of target genes and participating in multiple signaling pathways in plants. A number of studies have shown the important biological functions and working mechanisms of WRKY TFs in plant responses to high temperature. However, there are few reviews that summarize the research progress on this topic. To fully understand the role of WRKY TFs in the response to high temperature, this paper reviews the structure and regulatory mechanism of WRKY TFs, as well as the related signaling pathways that regulate plant growth under high-temperature stress, which have been described in recent years, and this paper provides references for the further exploration of the molecular mechanisms underlying plant tolerance to high temperature.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1175G-1175
Author(s):  
David W. Davis ◽  
Karl J. Sauter

Attention has been given in recent literature to crop breeding for heat tolerance, but, as with certain other physiological traits, such as photosynthetic efficiency, practical gain has lagged. The question remains as to whether heat tolerance can be improved, and, if so, if it can most efficiently be improved by a holistic approach, as in breeding for yield following timely high temperature levels in the field environment, or whether the breeding for heat (and drought) tolerance components in the laboratory would be feasible. At issue is the identification and repeatability of key plant responses, such as cell membrane damage, heat shock protein formation, increased ethylene output and other responses, and the relevance, effectiveness and cost of screening for such traits. Results from our laboratory, and the work of others, will be reviewed.


Sign in / Sign up

Export Citation Format

Share Document