scholarly journals DIURNAL PHOTOSYNTHESIS AND STARCH DEPOSITION IN LEAVES OF FRUITING AND DEFLOWERED RED RASPBERRY CANES

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 654b-654
Author(s):  
Stephen F. Klauer ◽  
Chuhe Chen ◽  
Paul W. Foote ◽  
J. Scott Cameron

On four dates during the 1991 growing season, gas exchange rates were measured on the same middle leaflets every 3 h from 7am-10pm from deflowered (DF) and fruiting (F) red raspberry (Rubus idaeus L. cv. “Meeker”) canes. Concurrently, the adjacent side leaflets were sampled for anatomical starch determination. The dates corresponded to the late anthesis/early green fruit, early red fruit, late red fruit, and post fruit maturity stages of the growing season. For all dates, CO2 assimilation (A) was highest from 7-10am, lowest at 4pm, and increased at 7pm. Overall A peaked during fruit development. Leaves of F canes had greater A than leaves of DF canes during fruit development, but rates were similar after fruit maturity. Starch accumulation in leaf cross-sections generally followed the diurnal pattern observed for A. Starch appeared heaviest from 7am-lpm and often showed an increase from 7-10pm. Leaves from DF canes generally had a greater accumulation of starch. Seasonally, leaf starch from F canes appeared greatest at late anthesis, decreased during fruit development and was very low post fruit maturity. Leaf starch in DF canes appeared greatest at the late anthesis and late red fruit stages. DF leaves had greater dry weight accumulation than F leaves during the red fruit stages. A Western blot showed that Rubisco levels as a percentage of total soluble protein were higher during fruit development and decreased after fruit maturity.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1118g-1118
Author(s):  
Stephen F. Klauer ◽  
Chuhe Chen ◽  
J. Scott Cameron ◽  
Carol A. Hartley

In the early spring, 300 canes of `Meeker' red raspberry were tagged and 150 were deflowered at anthesis. During a 12-week period beginning at anthesis, leaves were sampled for anatomical sectioning and determination of chlorophyll content and dry weight per leaf unit area,Comparisons of leaf cross-sections from fruiting (F) and deflowered (DF) canes demonstrated high levels of starch accumulation in the latter. This accumulation of starch was layered throughout the cross section, and size of starch crystals varied by location. Dry weight per leaf unit area increased in all leaves during the season, but was consistently greater in leaves of DF canes throughout the season.Total leaf chlorophyll and chlorophyll a content increased until reaching a maximum three weeks after anthesis, Both decreased slightly until nine weeks after anthesis and sharply thereafter as leaves began to senesce. Chlorophyll b content remained nearly constant until eight weeks after anthesis at which time levels declined during the onset of senescence.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1118G-1118
Author(s):  
Stephen F. Klauer ◽  
Chuhe Chen ◽  
J. Scott Cameron ◽  
Carol A. Hartley

In the early spring, 300 canes of `Meeker' red raspberry were tagged and 150 were deflowered at anthesis. During a 12-week period beginning at anthesis, leaves were sampled for anatomical sectioning and determination of chlorophyll content and dry weight per leaf unit area, Comparisons of leaf cross-sections from fruiting (F) and deflowered (DF) canes demonstrated high levels of starch accumulation in the latter. This accumulation of starch was layered throughout the cross section, and size of starch crystals varied by location. Dry weight per leaf unit area increased in all leaves during the season, but was consistently greater in leaves of DF canes throughout the season. Total leaf chlorophyll and chlorophyll a content increased until reaching a maximum three weeks after anthesis, Both decreased slightly until nine weeks after anthesis and sharply thereafter as leaves began to senesce. Chlorophyll b content remained nearly constant until eight weeks after anthesis at which time levels declined during the onset of senescence.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 539c-539
Author(s):  
Stenhen F. Klauer ◽  
J. Scott Cameron ◽  
Paul W. Foote

Results from previous cultural and physiological studies of red raspberry suggest that primocanes compete with floricanes for light, nutrients and/or photoassimilates. This study was undertaken to determine whether this competition might be reflected in the actual translocation of photoassimilates between the two types of canes. In 1993, pairs of greenhouse grown, potted red raspberry (Rubus idaeus L.) plants contaming one or two floricanes and numerous primocanes were labeled with 14CO2 on four dates corresponding with early anthesis, green fruit, red fruit and post fruit maturity stages of the growing season. For each experiment, either a floricane or a primocane was exposed to 92.5μCi 14CO2 within a sealed bag. After 24 hours, the bag was removed and the presence of label was monitored for up to 11 days. Activity was determined using liquid scintillation. At all developmental stages 14C moved from the labeled floricane to primocanes that were from 2.5 cm to 1.5 m tall and to the roots. Movement was quickest and relatively greatest at early anthesis, dccreascd during fruiting, and was still occuring at 2 months after fruit maturity. Small amounts of label were detected in roots of labeled primocanes at all stages, but trace amounts were present in fruit and other primocanes only at post fruit maturity.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 468b-468
Author(s):  
Stephen F. Klauer ◽  
J. Scott Cameron ◽  
Chuhe Chen

After promising results were obtained with an open-style split trellis (two top wires) in its initial year, two new trials were established in 1997 in northwest (Lynden) and southwest (Woodland) Washington. For the split trellis, actual yields were 33% (machine-picked 1/2 season) and 17% (hand-picked) greater, respectively, for the two locations compared to the conventional trellis (one top wire). In Woodland, canes from the split trellis had 33% more berries, 55% more laterals, 69% more leaves, and 25% greater leaf area compared with the conventional trellis. Greatest enhancement of these components was in the upper third of the canopy. Laterals were also shorter in this area of the split canopy, but there was no difference in average total length of lateral/cane between trellis types. Total dry weight/cane was 22% greater in the split trellis, but component partitioning/cane was consistent between the two systems with fruit + laterals (43%) having the greatest above-ground biomass, followed by the stem (30% to 33%) and the leaves (21% to 22%). Measurement of canopy width, circumference, and light interception showed that the split-trellis canopy filled in more quickly, and was larger from preanthesis through postharvest. Light interception near the top of the split canopy was 30% greater 1 month before harvest with 98% interception near the top and middle of that canopy. There was no difference between the trellis types in leaf CO2 assimilation, spectra, or fluorescence through the fruiting season, or in total nitrogen of postharvest primocane leaves.


1993 ◽  
Vol 73 (4) ◽  
pp. 1105-1113 ◽  
Author(s):  
Ribo Deng ◽  
Danielle J. Donnelly

Micropropagated shoots of red raspberry (Rubus idaeus L. ’Comet’) were rooted on modified Murashige-Skoog medium lacking sucrose, in specially constructed plexiglass chambers, under ambient (340 ± 20 ppm) or enriched (1500 ± 50 ppm) CO2 and ambient (ca. 100%) or reduced (90 ± 5%) relative humidity. Cultured plantlets were evaluated for their survival, rooting and relative vigor, leaf and root number, stem and root length, total leaf area, total fresh and dry weight, gas exchange rate, and stomatal features, prior to transplantation to soil and at intervals for 6 wk ex vitro. In vitro CO2 enrichment promoted plantlet growth, rooting and both the survival and early growth of transplants. CO2 enrichment increased stomatal aperture of plantlet leaves but did not apparently increase water stress at transplantation. Reduced in vitro RH did not affect plantlet growth but decreased stomatal apertures and stomatal index on leaves of cultured plantlets and promoted both the survival and early growth of transplants. In vitro CO2 and RH levels did not affect the photosynthetic rate of either plantlets or transplants. Only the stomata on leaves of plantlets from the ambient CO2 and reduced RH treatment were functional. Normal stomatal function was not observed in persistent leaves of transplants from the other treatments, even 2 wk after transplantation. In vitro CO2 enrichment acted synergistically with RH reduction in improving growth of plantlets both in vitro and ex vitro. Hardened red raspberry plantlets obtained through CO2 enrichment and RH reduction survived direct transfer to ambient greenhouse conditions without the necessity for specialized ex vitro acclimatization treatment. Key words: Acclimatization, growth analysis, photosynthesis, Rubus idaeus L., stomata, tissue culture


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 682e-682
Author(s):  
B.E. Maust ◽  
J.G. Williamson ◽  
R.L. Darnell

A field experiment was conducted in Gainesville, Fla., with two southern highbush blueberry cultivars, `Misty' and `Sharpblue', to investigate the influence of varying flower bud load on the timing and extent of vegetative and reproductive development. Flower bud load was adjusted on three different canes on ten plants by removing none, one-third, or two-thirds of the flower buds. Vegetative budbreak, leaf area, fruit number, and fruit fresh weight and dry weight were measured. Vegetative budbreak was delayed with increasing flower bud load. Vegetative budbreak, leaf area, and leaf area: fruit ratio decreased with increasing flower bud load. Fruit maturity was delayed and average berry fresh weight and dry weight declined with decreasing leaf area:fruit ratio. Responses were similar for both cultivars although `Misty' was more adversely affected by high flower bud load and low leaf area: fruit ratio.


2004 ◽  
Vol 129 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Hannah G. Rempel ◽  
Bernadine C. Strik ◽  
Timothy L. Righetti

The effects of 15N-labeled fertilizer applied to mature summer-bearing red raspberry (Rubus idaeus L. `Meeker') plants were measured over 2 years. Four nitrogen (N) treatments were applied: singularly at 0, 40, or 80 kg·ha-1 of N in early spring (budbreak), or split with 40 kg·ha-1 of N (unlabeled) applied at budbreak and 40 kg·ha-1 of N (15N-depleted) applied eight weeks later. Plants were sampled six times per year to determine N and 15N content in the plant components throughout the growing season. Soil also was sampled seven times per year to determine inorganic N concentrations within the four treatments as well as in a bare soil plot. There was a tendency for the unfertilized treatment to have the lowest and for the split-N treatment to have the highest yield in both years. N application had no significant effect on plant dry weight or total N content in either year. Dry weight accumulation was 5.5 t·ha-1 and total N accumulation was 88 to 96 kg·ha-1 for aboveground biomass in the fertilized plots in 2001. Of the total N present, averaged over 2 years, 17% was removed in prunings, 12% was lost through primocane leaf senescence, 13% was removed through fruit harvest, 30% remained in the over-wintering plant, and 28% was considered lost or transported to the roots. Peak fertilizer N-uptake occurred by July for the single N applications and by September for the last application in the split-N treatment. This uptake accounted for 36% to 37% (single applications) and 24% (last half of split application) of the 15N applied. Plants receiving the highest single rate of fertilizer took up more fertilizer N while plants receiving the lower rate took up more N from the soil and from storage tissues. By midharvest, fertilizer N was found primarily in the fruit, fruiting laterals, and primocanes (94%) for all fertilized treatments; however, the majority of the fertilizer N applied in the last half of the split application was located in the primocanes (60%). Stored fertilizer N distribution was similar in all fertilized treatments. By the end of the second year, 5% to 12% of the fertilizer acquired in 2001 remained in the fertilized plants. Soil nitrate concentrations increased after fertilization to 78.5 g·m-3, and declined to an average of 35.6 g·m-3 by fruit harvest. Seasonal soil N decline was partially attributed to plant uptake; however, leaching and immobilization into the organic fraction may also have contributed to the decline.


2021 ◽  
pp. 1-4
Author(s):  
Lisa Wasko DeVetter ◽  
Suzette Galinato ◽  
Troy Kortus ◽  
Jonathan Maberry

Floricane red raspberry (Rubus idaeus) produces biennial canes that are traditionally managed by annual selective removal of previously fruited floricanes and training of primocanes that will bear fruit in the next growing season. This process of pruning and training is labor intensive and costly, and growers would benefit from more economical methods of pruning and training. This 6-year project evaluated the economic viability of alternate-year (AY) production in a commercial floricane red raspberry field in northwest Washington and compared it to traditional, every-year (EY) production to assess whether the former could save costs. Despite savings from reduced chemicals, fertilizers, labor, general farm supplies, and other variable costs, the overall benefits of AY production were not enough to offset losses in revenue resulting from reduced yields under the conditions of this experiment in northwest Washington.


HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 590-592 ◽  
Author(s):  
Jean-Pierre Privé ◽  
J. Alan Sullivan

Growth rates for two types of tissue-cultured plant stock for `Heritage', `Ruby', and `Redwing' red raspberry (Rubus idaeus L.) were examined. Actively growing plantlets from the greenhouse (G) were compared to cold-treated (CT) plantlets from cold storage. The greatest differences between these two occurred during the first 6 weeks after planting. At 4 weeks, CT plants for all cultivars had longer canes and internodes, sometimes twice that of G plants. Although `Heritage' had greater total plant dry weights following chilling, `Ruby' and `Redwing' had less. Chilling had no effect on `Heritage' root growth but did reduce root dry weight for `Redwing' and `Ruby'. Relative growth rate (RGR) and leaf area ratio (L-AR) were more effective variables for analyzing growth as they considered differences in initial biomass and cane number and provided a better representation of the data during the initial 6 weeks of growth. All cultivars showed a greater total plant RGR and LAR for the CT plants at 6 weeks. During the first 4 weeks, the G plants were more efficient producers of root dry matter while the CT plants were more efficient producers of cane dry matter. By 6 weeks, the G plants had partitioned a greater percentage of their assimilates into cane growth while the leaves, canes, and roots of the CT plants contributed equally to total RGR. No difference in total or individual component RGR was observed after 6 weeks.


HortScience ◽  
2010 ◽  
Vol 45 (6) ◽  
pp. 894-898 ◽  
Author(s):  
Marja Rantanen ◽  
Pauliina Palonen

Partially released dormancy causes poor and uneven bud break in temperate plant species like red raspberry (Rubus idaeus L.). Insufficient chilling may be a problem when raspberries are grown at southern latitudes and in year-round production. Dormancy may be released by sublethal stress in many species. We studied the effect of sublethal stress on endodormancy in red raspberry ‘Glen Ample’ and ‘Ottawa’. Canes growing in pots were treated with either hot water (45 °C, 1 h) or the dormancy-breaking chemical, hydrogen cyanamide (1.04%), after accumulation of 0, 240, 480, 720, 960, or 1200 h of chilling at 1 °C. Bud break, vegetative growth, and number of flowers were recorded during 12 weeks of greenhouse forcing after the treatments. Chilling increased bud break, growth, and dry weight of lateral shoots and number of flowers in both cultivars. During deepest endodormancy (0 and 240 h of chilling), treatment with either hot water or hydrogen cyanamide enhanced bud break and lateral shoot growth but could not completely replace chilling. In ‘Ottawa’, hydrogen cyanamide was more effective than hot water during deepest endodormancy, but hot water treatment broke dormancy effectively when 720 h of chilling had accumulated. For ‘Glen Ample’, hot water was as effective as hydrogen cyanamide in breaking endodormancy. Hot water treatment reduced the number of flowers in ‘Glen Ample’ during late endodormancy (720, 960, and 1200 h of chilling). The chilling requirement for ‘Ottawa’ was fulfilled between 720 and 960 h of chilling. However, in ‘Glen Ample’, 1200 h of chilling was not enough to fully release bud dormancy; bud break remained low and it was increased by dormancy-breaking treatments. Hot water treatment can be used to release endodormancy in raspberries, but treatment conditions need to be optimized to preserve crop potential. Chemical name used: hydrogen cyanamide (Dormex, Hi-Cane, Morgrapes).


Sign in / Sign up

Export Citation Format

Share Document