EXTENDING STORAGE LIFE OF PAPAYA WITH EDIBLE COATING

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 679b-679 ◽  
Author(s):  
Elizabeth Baldwin ◽  
Myrna Nisperos-Carriedo ◽  
Craig Campbell

Application of edible coatings that can simulate controlled atmosphere storage has become a popular concept. An experimental coating developed at the USDA Winter Haven laboratory, Nature-Seal (patent application #07/679,849), or a commercial composite coating was applied to papaya fruit at the green (immature) stage for comparison to uncoated fruit. Both types of coatings contain a polysaccharide base and therefore have different properties than most commercial “wax” coatings. The fruit were stored continuously at 21C or 3 days at 13C then ripened at 21C with 95 to 98% RH. Sample fruit from each treatment were analyzed for color, weight loss, CO2 ethylene, & % decay and softening. Results showed substantial extension of papaya shelf-life when the fruit were coated with Nature Seal while the commercial coating was less effective. This effect was due to retardation of ripening as evidenced by delayed color development, softening, and effect of coating permeability to CO2 and O2 on climacteric CO2 and ethylene production.

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 766D-766
Author(s):  
Hidemi Izumi ◽  
Nathanee P. Ko ◽  
Alley E. Watada

Quality and physiology of carrot shreds were monitored during storage in air, low O2 (0.5%, 1%, and 2%), or high CO2 (3%, 6%, and 10%) at 0, 5, and 10C to evaluate the response to controlled-atmosphere (CA) storage. Oxygen uptake and CO2 production from respiration were reduced under low-O2 or high-CO2 atmosphere, the reduction being greater at lower O2 and higher CO2 levels. The respiratory quotient was about 1 with samples in air, more than 1 in low-O2, and less than 1 in high-CO2 atmosphere during storage at all temperatures. No differences were found in ethylene production, which were less than 0.2 μl·kg–1·h–1 with all samples. The CA containing 0.5% O2 and 10% CO2 reduced weight loss and formation of white-colored tissue and decreased pH, but did not affect microbial count and texture at all temperatures. Off-odor and black root rot were not detected in both CA and air atmospheres.


2014 ◽  
Vol 86 (1) ◽  
pp. 485-494 ◽  
Author(s):  
CRISTIANO ANDRÉ STEFFENS ◽  
CASSANDRO V.T. DO AMARANTE ◽  
ERLANI O. ALVES ◽  
AURI BRACKMANN

The objective of this study was to evaluate the effect of controlled atmosphere (CA) on quality preservation of ‘Laetitia’ plums, mainly on internal breakdown, in order to determine the best CA storage conditions. Two experiments were carried out one in 2010, and another in 2011. In 2010, besides cold storage (CS; 21.0 kPa O2 + 0.03 kPa CO2), the fruits were stored under the following CA conditions (kPa O2+kPa CO2): 1+3, 1+5, 2+5, 2+10, and 11+10. In 2011, the fruits were stored under CS and CA of 1+0, 1+1, 2+1, and 2+2. The fruit stored under different CA conditions had lower respiration and ethylene production, better preservation of flesh firmness, texture and titratable acidity, lower skin red color, and lower incidence of skin cracking than the fruit in CS. In 2010, the fruit under CA with 2+5, 1+5, and 1+3 had a pronounced delay in ripening, although it exhibited a high incidence of internal breakdown. In 2011, the CA conditions with 2+1 and 2+2 provided the best delay in ripening and a reduced incidence of internal breakdown. The best CA condition for cold storage (at 0.5°C) of ‘Laetitia’ plums is 2 kPa O2 + 2 kPa CO2.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 254E-255
Author(s):  
Laura Lehman-Salada ◽  
George M. Greene

In both experiments. 20-apple samples from 6 commercial orchards were harvested and stored in 208 liter containers at 0C for 4, 6, and 8 months. Additional samples were removed from CA and held at 0C for 14 days before evaluation. Gas composition was measured and controlled 6 times per day using automatic control equipment. In the first experiment, samples were stored at constant 0.0% CO2 and one of three O2 regimes (constant 2.0%. 0.5 rising to 3.5%. or 3.5% falling to 0.5% O2). Apples stored at 3.5% falling to 0.5% O2 during the storage period were softer than apples held at constant 2.0% or those held at 0.5% rising to 3.5% O2 during the storage period. Variable O2 concentrations did not influence weight loss during storage and insignificant scald, flesh browning, core browning, rot, and low 02 injury were observed. In the second experiment, samples were stored at constant 2.0% O2 and one of three CO2 regimes (constant 0%, constant 5%. or 0% rising to 6% CO2). Constant 5% or rising CO2 conditions did not significantly influence flesh softening or weight loss during storage. Negligible CO2 injury was observed.


1968 ◽  
Vol 8 (34) ◽  
pp. 630
Author(s):  
KJ Scott ◽  
RBH Wills ◽  
EA Roberts

Red Jonathan apples were stored at 32�F in 5 per cent carbon dioxide and 16 per cent oxygen in the presence of calcium chloride. The incidence of breakdown decreased linearly as weight loss was increased. Thus carbon dioxide and oxygen levels, and weight loss may all affect the incidence of breakdown in apples in controlled atmospheres. Without information on weight loss to ensure that there is no confounding, conclusions about the effects of carbon dioxide and oxygen may be misleading,


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 514D-514
Author(s):  
Yong Seo Park ◽  
Clara Pelayo ◽  
Betty Hess-Pierce ◽  
Adel A. Kader

`Shinko' and `Shinsui' Asian pears were kept in air, 2 kPa O2, 2 kPa O2 + 2.5 kPa CO2, and 2 kPa O2 + 5 kPa CO2 (balance N2 in each treatment) at 0 °C or 5 °C for up to 24 weeks. The three CA treatments reduced respiration (O2 consumption) and ethylene production rates relative to air control pears; these rates were higher at 5 °C than at 0 °C and higher for `Shinsui' than for `Shinko' pears. While `Shinsui' pears had a climacteric pattern of respiration and ethylene production rates, `Shinko' pears produced very small quantities of ethylene and exhibited a non-climacteric respiratory pattern. `Shinko' pears had a much longer postharvest life than `Shinsui' pears (24 weeks vs. 12 weeks at 0 °C). CA treatments had a greater effect on delaying deterioration of `Shinsui' than `Shinko' pears, which were more sensitive to CO2 injury and associated accumulation of fermentative metabolites (acetaldehyde, ethanol, ethyl acetate). `Shinko' pears did not benefit from CA storage and were best kept in air at 0 °C. An atmosphere of 2 kPa O2 with or without up to 5 kPa CO2 delayed flesh breakdown of `Shinsui' pears during storage 0 °C.


2016 ◽  
Vol 46 (4) ◽  
pp. 585-589
Author(s):  
Auri Brackmann ◽  
Fabio Rodrigo Thewes ◽  
Rogerio de Oliveira Anese ◽  
Wanderlei Linke Junior

ABSTRACT: The aim of this research was to evaluate the effect of preharvest boron application on the physical and chemical quality of 'Galaxy' apples after harvest and in controlled atmosphere storage during eight months, plus seven days of shelf life at 20°C. The experiment was performed with two treatments applied on the field: [1] Control (fruit without boron application) and [2] Foliar application of boron (four applications of 1.5kg ha-1). Findings showed that the boron application promoted a higher ethylene production and respiratory rate and it application also reduced the flesh firmness in relation to the fruits without it. A similar result was obtained after eight months of storage plus seven days of shelf life. The preharvest application of boron makes it possible to harvest apples earlier due to the fact that it accelerates the fruit metabolism. However, the fruits end up presenting a lower storage potential as a result of the higher ethylene production, respiration rate, decay incidence, mealiness and a reduction of the healthy fruit percentage and flesh firmness after CA storage.


Sign in / Sign up

Export Citation Format

Share Document