scholarly journals CONTINUOUS USE OF PLANT NUTRIENT SOLUTION FOR HYDROPONIC CULTURE OF SWEETPOTATO:IMPLICATIONS AND EFFECTS

HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 731d-731
Author(s):  
A.A. Trotman ◽  
P.P. David ◽  
D.G. Mortley ◽  
G.W. Carver

In a greenhouse study, continuous use of the same plant nutrient solution for hydroponic culture of sweetpotato was investigated to determine the effect on storage root yield, plant growth and nutrient solution composition. Plants were grown for 120 days under continuous flow from a 30.4-liter reservoir. Plant growth was compared when nutrient solution was changed at 14-day intervals and when nutrient solution was not changed but nutrients replenished through addition of a Modified half-Hoagland's (N:K=1:2.4) plant nutrient solution when volume in reservoir was -10 liters. Storage root yield was significantly decreased (181 vs 310.3 g/plant) and foliar biomass was significantly increased (372.4 vs 2% g/plant) when nutrient solution was not changed Nitrate and phosphate concentrations decreased in the plant nutrient over the duration of the experiment while sulfate and chloride concentrations increased. Salinity and electrical conductivity were monitored at 2-day intervals and increased with duration of the crop. Increased foliage production may have been the result of nitrogen replenishment going largely for foliage rather than storage root production. It may be that continuous use of the same plant nutrient solution as practiced in this study, resulted in lowered phosphate and nitrate concentrations that limited uptake of these ions by sweetpotato plants, thus reducing yield

HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 429b-429
Author(s):  
Audrey A. Trotman ◽  
P.P. David ◽  
D.G. Mortley ◽  
D. Douglas

In developing a nutrition management strategy that reduces the quantity of products entering the waste management stream, gaining an understanding of the patterns and fluctuations of nutrient levels and crop growth characteristics is essential. In a greenhouse study, `TU-82-155' sweetpotato was grown hydroponically for 120 days in three nutrient application–replenishment treatments: l) REG-solution changed at 14-day intervals and volume allowed to fluctuate; 2) daily replenishment with 10× concentrate of a modified quarter Hoagland's solution (MQH) or with water to regain set volume (30.4 liters) and maintain set point of electrical conductivity [(EC); 1050 to 1200 μmho]; 3) daily replenishment with l0× concentrate of a modified half Hoagland's solution (MHH) or with water to regain the set volume and maintain the set point of EC. There were no statistically significant differences among nutrient application protocols for storage root count, fresh and dry weights, and percent dry matter. The MHH treatment consistently yielded significantly higher leaf biomass and pencil roots (>1 mm in diameter), indicating a higher potential for increased storage root yield. A nutrient application protocol using treatment 2 has potential for reduced waste production if used in hydroponic sweetpotato production. The plants from the MQH treatment initiated vegetative buds at a significantly later date than in the other treatments and generally showed evidence of suppressed plant development.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1708
Author(s):  
Masaru Sakamoto ◽  
Takahiro Suzuki

Nutrient solution concentration (NSC) is a critical factor affecting plant growth in hydroponics. Here, we investigated the effects of hydroponic NSC on the growth and yield of sweetpotato (Ipomoea batatas (L.) Lam.) plants. First, sweetpotato cuttings were cultivated hydroponically in three different NSCs with low, medium, or high electrical conductivity (EC; 0.8, 1.4, and 2.6 dS m−1, respectively). Shoot growth and storage root yield increased at 143 days after plantation (DAP), depending on the NSC. Next, we examined the effect of NSC changes at half of the cultivation period on the growth and yield, using high and low NSC conditions. In plants transferred from high to low EC (HL plants), the number of attached leaves increased toward the end of the first half of the cultivation period (73 DAP), compared with plants transferred from low to high EC (LH plants). Additionally, the number of attached leaves decreased in HL plants from 73 DAP to the end of the cultivation period (155 DAP), whereas this value increased in LH plants. These changes occurred due to a high leaf abscission ratio in HL plants. The storage root yield showed no significant difference between HL and LH plants. Our results suggest that the regulation of hydroponic NSC during the cultivation period affects the growth characteristics of sweetpotato.


HortScience ◽  
1990 ◽  
Vol 25 (8) ◽  
pp. 864c-864 ◽  
Author(s):  
Edwin Martinez ◽  
Conrad Bonsi ◽  
Phili p Loretan ◽  
Walter Hill ◽  
Desmond Mortley ◽  
...  

Sweet potato, selected as a potential food source for future long-term manned space missions, is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Greenhouse experiments were conducted to determine the effects of two pH treatments on the growth and storage root yield of `T1-155' and `Georgia Jet ' sweet potato cultivars. Vine cuttings of these cultivars were grown in a specially designed Tuskegee University NFT system. Plants were subjected to a continuous pH treatment in which the nutrient solution pH was maintained at 5.00 ± 0.10 throughout the growth period, and a periodic pH treatment in which the nutrient solution pH was adjusted to 6.00 at biweekly changeover intervals and when reservoirs were refilled with deionized water between biweekly changeovers. Results showed that for both cultivars the treatment with periodic pH adjustment had significantly higher storage root yield than treatment with continuous pH adjustment. This experiment is being repeated.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 768F-768
Author(s):  
P.P. David ◽  
A.A. Trotman ◽  
D.G. Mortley ◽  
D. Douglas ◽  
J. Seminara

A study was initiated in the greenhouse to examine the effects of five \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios on sweetpotato growth. Plants were grown from vine cuttings of 15-cm length, planted in 0.15 x 0.15 x 1.2-m growth channels using a closed nutrient film technique system. Nutrient was supplied in a modified half-strength Hoagland's solution with a 1:2:4 N:K ratio. \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios investigated were 100:0, 0:100, 40:60, 60:40, and a control that consisted of a modified half-Hoagland solution with an N:K ratio of 1:2:4 and an \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} of 1:7. Treatments were initiated 30 days after planting (DAP). Sequential plant harvest began 30 DAP and continued at 30-day intervals until final harvest at 150 DAP. Results showed a linear increase in fresh storage root fresh weight until 90 DAP for all treatments. However, from 60 DAP until the end of the growing season, plants grown in a 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} solution consistently produced significantly less storage roots than in all other treatments. While all other treatments showed a decrease in storage root fresh weight after 90 DAP, plants grown in 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} and the control solution continued to increase linearly in storage root production. Storage root dry weight throughout the growing season followed similar trends to that of storage root fresh weight. Data suggest that a nutrient solution containing NO–3as its sole nitrogen source may be adequate for sweetpotato growth. This would make it possible for utilizing a one-way pH control method for nutrient solution.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Lansana Kamara ◽  
Fayia Kassoh ◽  
Ernest Kamara ◽  
Festus Masssaquoi ◽  
Keiwoma Yila ◽  
...  

2001 ◽  
Vol 9 (4) ◽  
Author(s):  
P. H. Ntawuruhunga ◽  
P. Rubaihayo ◽  
J. B.A. Whyte ◽  
A. G.O. Dixon ◽  
D. S.O. Osiru

Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 140
Author(s):  
Avela Sogoni ◽  
Muhali Jimoh ◽  
Learnmore Kambizi ◽  
Charles Laubscher

Climate change, expanding soil salinization, and the developing shortages of freshwater have negatively affected crop production around the world. Seawater and salinized lands represent potentially cultivable areas for edible salt-tolerant plants. In the present study, the effect of salinity stress on plant growth, mineral composition (macro-and micro-nutrients), and antioxidant activity in dune spinach (Tetragonia decumbens) were evaluated. The treatments consisted of three salt concentrations, 50, 100, and 200 mM, produced by adding NaCl to the nutrient solution. The control treatment had no NaCl but was sustained and irrigated by the nutrient solution. Results revealed a significant increase in total yield, branch production, and ferric reducing antioxidant power in plants irrigated with nutrient solution incorporated with 50 mM NaCl. Conversely, an increased level of salinity (200 mM) caused a decrease in chlorophyll content (SPAD), while the phenolic content, as well as nitrogen, phosphorus, and sodium, increased. The results of this study indicate that there is potential for brackish water cultivation of dune spinach for consumption, especially in provinces experiencing the adverse effect of drought and salinity, where seawater or underground saline water could be diluted and used as irrigation water in the production of this vegetable.


2021 ◽  
Vol 22 (9) ◽  
pp. 4826
Author(s):  
Yang Gao ◽  
Zhonghou Tang ◽  
Houqiang Xia ◽  
Minfei Sheng ◽  
Ming Liu ◽  
...  

A field experiment was established to study sweet potato growth, starch dynamic accumulation, key enzymes and gene transcription in the sucrose-to-starch conversion and their relationships under six K2O rates using Ningzishu 1 (sensitive to low-K) and Xushu 32 (tolerant to low-K). The results indicated that K application significantly improved the biomass accumulation of plant and storage root, although treatments at high levels of K, i.e., 300–375 kg K2O ha−1, significantly decreased plant biomass and storage root yield. Compared with the no-K treatment, K application enhanced the biomass accumulation of plant and storage root by 3–47% and 13–45%, respectively, through promoting the biomass accumulation rate. Additionally, K application also enhanced the photosynthetic capacity of sweet potato. In this study, low stomatal conductance and net photosynthetic rate (Pn) accompanied with decreased intercellular CO2 concentration were observed in the no-K treatment at 35 DAT, indicating that Pn was reduced mainly due to stomatal limitation; at 55 DAT, reduced Pn in the no-K treatment was caused by non-stomatal factors. Compared with the no-K treatment, the content of sucrose, amylose and amylopectin decreased by 9–34%, 9–23% and 6–19%, respectively, but starch accumulation increased by 11–21% under K supply. The activities of sucrose synthetase (SuSy), adenosine-diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (SSS) and the transcription of Susy, AGP, SSS34 and SSS67 were enhanced by K application and had positive relationships with starch accumulation. Therefore, K application promoted starch accumulation and storage root yield through regulating the activities and genes transcription of SuSy, AGPase and SSS in the sucrose-to-starch conversion.


Sign in / Sign up

Export Citation Format

Share Document