scholarly journals The Impact of Salt Stress on Plant Growth, Mineral Composition, and Antioxidant Activity in Tetragonia decumbens Mill.: An Underutilized Edible Halophyte in South Africa

Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 140
Author(s):  
Avela Sogoni ◽  
Muhali Jimoh ◽  
Learnmore Kambizi ◽  
Charles Laubscher

Climate change, expanding soil salinization, and the developing shortages of freshwater have negatively affected crop production around the world. Seawater and salinized lands represent potentially cultivable areas for edible salt-tolerant plants. In the present study, the effect of salinity stress on plant growth, mineral composition (macro-and micro-nutrients), and antioxidant activity in dune spinach (Tetragonia decumbens) were evaluated. The treatments consisted of three salt concentrations, 50, 100, and 200 mM, produced by adding NaCl to the nutrient solution. The control treatment had no NaCl but was sustained and irrigated by the nutrient solution. Results revealed a significant increase in total yield, branch production, and ferric reducing antioxidant power in plants irrigated with nutrient solution incorporated with 50 mM NaCl. Conversely, an increased level of salinity (200 mM) caused a decrease in chlorophyll content (SPAD), while the phenolic content, as well as nitrogen, phosphorus, and sodium, increased. The results of this study indicate that there is potential for brackish water cultivation of dune spinach for consumption, especially in provinces experiencing the adverse effect of drought and salinity, where seawater or underground saline water could be diluted and used as irrigation water in the production of this vegetable.

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 894
Author(s):  
Emad M. Hafez ◽  
Hany S. Osman ◽  
Usama A. Abd El-Razek ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
...  

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1262
Author(s):  
Shonisani Eugenia Ramashia ◽  
Felicia Matshepho Mamadisa ◽  
Mpho Edward Mashau

This study investigated the impact of Parinari curatellifolia peel flour on the nutritional, physical and antioxidant properties of formulated biscuits. Biscuits enriched with 5%, 10%, 15% and 20% of Parinari (P). curatellifolia peel flour were formulated and characterised. Thermal, physicochemical, polyphenolic compounds and antioxidant properties of flour and biscuits were determined. The incorporation of P. curatellifolia peel flour significantly increased (p < 0.05) thermal properties (onset, peak and conclusion temperatures) of flour. However, enthalpy of gelatinisation, viscosity and pH of flour samples decreased. Nutritional analysis revealed an increase in ash (0.74% to 2.23%) and crude fibre contents (0.39% to 2.95%) along with an increase of P. curatellifolia peel flour levels. Protein content and carbohydrates decreased while moisture content was insignificantly affected by the addition of P. curatellifolia peel flour. The L*, b* values and whiteness index of formulated biscuits decreased while parameter a* value (10.76 to 21.89) and yellowness index (69.84 to 102.71) decreased. Physical properties such as diameter (3.57 mm to 3.97 mm), spread ratio (2.67 to 3.45) and hardness (1188.13 g to 2432.60 g) increased with the inclusion levels of peel flour while weight and thickness decreased. The inclusion of P. curatellifolia improved the polyphenolic compounds and antioxidant activity of biscuits with values of total flavonoids content ranging from 0.028 to 0.104 mg CE/g, total phenolic content increasing from 20.01 mg to 48.51 mg GAE/g, ferric reducing antioxidant power (FRAP) increasing from 108.33 mg to 162.67 mg GAE/g and DPPH (2,2-diphenyl-1-picrylhydrazyl) from 48.70% to 94.72%. These results lead to the recommendation of the utilisation of P. curatellifolia peel flour to enhance the nutritional value, polyphenolic compounds and antioxidant activity of bakery products such as biscuits.


2021 ◽  
Author(s):  
Eman G. Sayed ◽  
Mona A. Ouis

Abstract A new glass fertilizer (GF) system of main composition 60P2O5.30K2O.3.5ZnO. 3.5MnO.3Fe2O3 was developed in response to the needs of pea plants with bio-fertilizers (Rhizobium leguminosarum. Bv.vicieae, Bacillus megaterium var phosphaticum, Bacillus circulans).GF was prepared by the traditional melt quenching technique at 1150°C. Characterization of prepared system was done using FTIR spectra before and after immersion in a simulated actual agriculture medium like 2% citric acid and distilled water. During two winter seasons, two successful field experiments were conducted at Cairo University's Eastern Farm to determine the impact of chemical, glass, and bio-fertilizers on plant growth, yield attributes, and seed quality of pea plant. Control treatment were without any addition of recommended chemical fertilizers and other treatments were full dose of recommended chemical fertilizers (100%RDF), glass fertilizers at rate 60 kg fed− 1, Glass fertilizers at rate30 kg fed− 1, 50% RDF ,100%RDF + bio-fertilizers, Glass fertilizers at rate 60 kg fed− 1 + bio-fertilizers, glass fertilizers at rate 30 kg fed− 1+ bio-fertilizers, 50%RDF + bio-fertilizers. Plots received 60 kg fed− 1 glass fertilizers + bio-fertilizers show the highest significant increment in plant growth, number and weight of pods plant− 1, number of grain pods− 1, grain yield, biological yield, P%, k% in pea leaves and quality of pea seeds compared with plots without any addition (control) in both seasons.


2020 ◽  
Vol 19 (3) ◽  
pp. 37-45
Author(s):  
Dragana Stamenov ◽  
Timea I. Hajnal-Jafari ◽  
Biljana Najvirt ◽  
Snežana Anđelković ◽  
Jelena Tomić ◽  
...  

The objective of this work was to do a comparative study of Pseudomonas and Bacillus isolates for their plant growth-promoting (PGP) potential, monitoring the impact of selected isolates on the yield of English ryegrass (Lolium perenne). Isolation, physiological and biochemical characterization, in vitro assay of enzymatic and plant-growth promoting activities of isolates were done. Pseudomonas isolates have been shown to have the ability to use different sources of carbon, to live in the condition of low pH as well as temperature and to produce siderophore. On the other hand, Bacillus isolates have the ability to solubilize phosphate, to produce a greater amount of indol-3-acetic acid (IAA) than Pseudomonas isolates and have an inhibitory effect on the growth of phytopathogenic fungi. In other investigated traits, isolates were similar. The use of Pseudomonas sp. P12 and Bacillus sp. B1 isolates had a positive effect on the plant mass and total yield, which indicate that the use of these isolates can result in a better yield of forage crops.


2020 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Dilara Nasrin ◽  
Mahmuda Binte Latif ◽  
Shamim Al Mamun ◽  
Reyad Hossain Arif ◽  
Muliadi Muliadi

This research was carried out to assess the impact of cyclone on livelihood pattern in Pirojpur district, Bangladesh during January to June, 2017. The study was both qualitative and quantitative type. The primary data were collected using randomly sampling method (42+42+42=126 respondents) from Tushkhali, Bhitabaria and Pattashi villages of Pirojpur district. The secondary data were collected from different journals, articles, books, official documents, thesis papers and also daily newspapers etc. From the study it was observed that monthly income of  middle (4001-8000 tk) and high (8001-above tk) income groups ware decreased by 5% and 0.92% respectively while low income people (1-4000 tk) was increased due to decrease of production after Sidr. On the other hand, expenditure ability of low and middle income groups was decreased. Sidr has created a great impact on human health, livestock, fisheries, food habit, crop production and occupation pattern of the affected people. Respondent’s houses were damaged partially (66.78%), 33.22% completely and cultivated land 28.57 % completely by Sidr in study area. Respondents of the study area said that the production of rice (8%), chili (12%), and vegetables (11%) were reduced due to saline water entrance into the crop field after Sidr. Affected people were migrated (temporary 23.10%, local 25% and internal 26.10%) from Pirojpur to Dhaka (53%), Pirojpur to other places (47%) on the post Sidr due to loss of houses, shelters, cultivated land and lack of job opportunity. Among all factors of temporary migration, water logging was the first reason of migrating people of the study area. 


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 546C-546
Author(s):  
Braja B. Datta ◽  
Ray D. William

Field experiment on production systems of `Selva' day-neutral and `Totem' June-bearing strawberry was established in 1995 on the spring-killed cover crop mulched plots using randomized complete-block design. Seven soil cover treatments consisted of `Wheeler' rye (Secale cereale) and `Micah' and `Steptoe' barley (Hordium vulgare), `Micah' residue applied on soil surface, a wedge of perlite (artificial medium) placed next to strawberry row, perlite with `Wheeler' rye, and no treatment were used. During the early summer, cover crops were replanted between strawberry rows and mowed down after 6 weeks. In both cultivars, plant growth doubled during mid-summer, and `Micah'on surface produced better growth than the growth in other treatments. No significant difference was found on CO2 assimilation rate (mmol·m–2·s–1), leaflet length, and number of leaves and runners among treatments (P ≥ 0.1). Yield of `Totem' was ignored during the establishment year. In `Selva', `Micah' residue on surface produced 36% more crowns per plant and the greatest total yield than that of any other treatment. `Micah' on surface produced 50% more shoot biomass and 45% greater yield compared to `Micah' barley planted in the plot. Total `Selva' yield was 61% greater in perlite treatment than the yield in perlite with `Wheeler' rye and 31% greater than the control treatment. Comparison of `Selva' strawberry total yield and average fruit production between cover crops vs. control treatment using non-orthogonal contrast indicated no significant difference might suggests no detrimental interaction between cover crops and strawberry.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1290
Author(s):  
Márcio Vargas-Ramella ◽  
José M. Lorenzo ◽  
Sol Zamuz ◽  
María Esperanza Valdés ◽  
Daniel Moreno ◽  
...  

A scarce amount of knowledge about the use of Colombian berry (CB) in meat products is available in the literature. This work studies the impact of the addition of CB extracts (CBE) on pork patties at three different concentrations in the range 250–750 mg/kg. CBE were characterized in terms of their polyphenolic profile and antioxidant activity [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, half maximal inhibitory antioxidant concentration (IC50), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP) and oxygen radical absorbance capacity (ORAC) tests)]. After pork patties elaboration, instrumental and sensorial colour, as well as lipid oxidation measured as thiobarbituric acid reactive substances assay (TBARS) values, were evaluated for 10 days of refrigerated storage in a modified atmosphere (80% O2–20% CO2). The total anthocyanin composition represented 35% of the polyphenolic substances of the CBE, highlighting high contents in cyanidin derivatives. Additionally, other flavonoids (quercetin and kaempferol compounds) and phenolics acids, substances positively related to antioxidant activity, were identified and quantified. In addition, the incorporation of CBE resulted in improvements in colour and lipid stability of pork patties, especially for the highest concentration used. Our findings demonstrated that CBE could be added to pork patties without impairing their sensorial profile. Overall, our results indicate that the use of CBE as a source of natural antioxidant, natural colourant, or even as a functional ingredient could be promising, but more studies are necessary to confirm it.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 622-627 ◽  
Author(s):  
Guiseppe Colla ◽  
Youssef Roupahel ◽  
Mariateresa Cardarelli ◽  
Elvira Rea

A greenhouse experiment was carried out to determine growth, yield, fruit quality, gas exchange and mineral composition of watermelon plants (Citrullus Lanatus L. `Tex'), either ungrafted or grafted onto two commercial rootstocks `Macis' [Lagenaria siceraria (Mol.) Standl.] and `Ercole' (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne) and cultured in NFT. Plants were supplied with a nutrient solution having an electrical conductivity (EC) of 2.0 or 5.2 dS·m–1. The saline nutrient solution had the same basic composition, plus an additional of 29 mm of NaCl. Increased salinity in the nutrient solution decreased total yield. The reduction in total yield in saline treatments compared to control was due to a reduction in the fruit mean mass and not to the number of fruit per plant. Total fruit yield was 81% higher in grafted than in ungrafted plants. The lowest marketable yield recorded on ungrafted plants was associated with a reduction in both fruit mean mass and the number of fruits per plant in comparison to grafted plants. Salinity improved fruit quality in all grafting combinations by increasing dry matter (DM), glucose, fructose, sucrose, and total soluble solid (TSS) content. Nutritional qualities of grafted watermelons such as fruit DM, glucose, fructose, sucrose, and TSS content were similar in comparison to those of ungrafted plant. In all grafting combinations, negative correlations were recorded between Na+ and Cl– in the leaf tissue and net assimilation of CO2 Grafting reduced concentrations of sodium, but not chloride, in leaves. However, the sensitivity to salinity was similar between grafted and ungrafted plants and the higher total yield from grafting plants was mainly due to grafting per se.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 88 ◽  
Author(s):  
Fermín Morales ◽  
María Ancín ◽  
Dorra Fakhet ◽  
Jon González-Torralba ◽  
Angie L. Gámez ◽  
...  

Increased periods of water shortage and higher temperatures, together with a reduction in nutrient availability, have been proposed as major factors that negatively impact plant development. Photosynthetic CO2 assimilation is the basis of crop production for animal and human food, and for this reason, it has been selected as a primary target for crop phenotyping/breeding studies. Within this context, knowledge of the mechanisms involved in the response and acclimation of photosynthetic CO2 assimilation to multiple changing environmental conditions (including nutrients, water availability, and rising temperature) is a matter of great concern for the understanding of plant behavior under stress conditions, and for the development of new strategies and tools for enhancing plant growth in the future. The current review aims to analyze, from a multi-perspective approach (ranging across breeding, gas exchange, genomics, etc.) the impact of changing environmental conditions on the performance of the photosynthetic apparatus and, consequently, plant growth.


2019 ◽  
Vol 81 (3) ◽  
Author(s):  
Siti Aishah Mohd Ali ◽  
Che Radziah Che Mohd Zain ◽  
Jalifah Latip

The impact of global climate change on plants which has been widely reported can exhibit significant changes on the growth, yield and metabolite production. Studies on the impact of elevated carbon dioxide concentration, [CO2] on plant growth and production of phenolic constituents in Hibiscus sabdariffa var. UKMR-2 has not been reported in any previous studies. This study investigated the growth quality and production of phenolic constituents of UKMR-2 under different [CO2]. The cultivation was subjected to two atmospheric [CO2]; ambient (400 µmol/mol), and elevated (800 µmol/mol). Selected parameters for growth performance were recorded throughout the plant development. UKMR-2 calyx extract was analysed for total phenolic, total anthocyanins, antioxidant activity, and evaluated based on HPLC-PDA method. The results revealed that UKMR-2 responded differently to the [CO2] treatments. The results clearly showed that exposure to elevated [CO2] increased calyx yields, production of phenolic constituents, and antioxidant activity. Furthermore, different [CO2] had significant interaction on the production of phenolic constituents, and antioxidant activity (p < 0.05), except for plant growth. The HPLC-PDA showed the presence of delphinidin-3-O-sambubioside, cyanidin-3-O-sambubioside, ascorbic acid, caffeic acid, and chlorogenic acid. Therefore, increased [CO2] may have significant effects on UKMR-2 to not only produce higher production yields, but also on the production of phenolic constituents with potential physiological impact to human health.


Sign in / Sign up

Export Citation Format

Share Document