scholarly journals BETTERSNAP: A NEW, EDIBLE PODDED SOUTHERNPEA

HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 739f-739
Author(s):  
R. L. Fery ◽  
P. D. Dukes

Bettersnap southernpea (Vigna unguiculata) was developed as a replacement for the popular cultivar Snapea. The new cultivar is well adapted for production throughout the southern United States where it can be expected to produce excellent yields of edible pods or snaps. Bettersnap is resistant to root knot, a severe root disease incited by several species of the root-knot nematode (Meloidogyne spp.), and blackeye cowpea mosaic virus, the major pathogen of southernpea in the United States. Observations of natural epiphytotics indicate that the cultivar is also resistant to scab (Cladosporium vignae) and cercospora leaf spot (Cercospora cruenta). The new cultivar has the same maturity and high yield potential as Snapea. Bettersnap is recommended for use as a home garden cultivar for spring, mid-season, and fall plantings. It is particularly recommended for trial as a commercial processing cultivar for the production of the immature green pods used for the ``snap” component of the popular mixed packs of fresh peas and green snaps.

2010 ◽  
Vol 20 (3) ◽  
pp. 620-622
Author(s):  
W.B. Evans ◽  
V. Cerven ◽  
N. Winter ◽  
C.E. Coker

This report presents preliminary data and arguments supporting the investigation and possible adoption of a low-cost method of cherry and grape tomato (Solanum lycopersicum) production. Cherry and grape tomato crops are currently grown using indeterminate or relatively large determinate plants requiring trellising and significant hand labor at harvest. In contrast, processing tomato crops are usually determinate cultivars raised without supporting systems, and they are harvested mechanically. In Summer 2009, a Mississippi trial of home garden tomato cultivars included a compact, mounding yellow-fruited cherry tomato that produced more than 2 kg of fruit per plant in the first harvest. The architecture of the plant, high yield potential, and concentrated set indicate that there is potential to grow commercial cherry and grape tomato crops in much the same way commercial processing tomatoes are grown: unsupported on bare or mulched beds, with once-over harvest. Such a system could reduce the monetary and labor costs of production of cherry and grape tomatoes. Seed companies, tomato growers, and supporting agencies should work together to further investigate the potential of this system of cherry and grape tomato production.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 766B-766 ◽  
Author(s):  
Richard L. Fery* ◽  
Judy A. Thies

Root-knot nematodes (Meloidogyne spp.) are major pests of pepper (Capsicum spp.) in the United States, and parasitism of susceptible plants can result in severe yield losses. Although cultivars belonging to the species C. annuum account for most of the peppers grown in the United States. Habanero-type cultivars belonging to the species C. chinense are becoming increasingly popular. Unfortunately, all commercial Habanero-type cultivars are susceptible to root-knot nematodes. In 1997, the USDA released three C. chinense germplasm lines that exhibit high levels of resistance to root-knot nematodes. The resistance in these lines is conditioned by a single dominant gene, and this gene conditions resistance to the southern root-knot nematode (M. incognita), the peanut root-knot nematode (M. arenaria race 1), and the tropical root-knot nematode (M. javanica). A recurrent backcross breeding procedure has been used to transfer the C. chinense root-knot nematode resistance gene in Habanero-type germplasm. Several root-knot nematode resistant, Habanero-type candidate cultivars have been developed. Each of these Habanero-type candidate cultivars has a compact plant habit and produces a high yield of orange-colored, lantern-shaped fruit.


HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 494e-494
Author(s):  
R. L. Fery ◽  
P. D. Dukes

The Agricultural Research Service of the United States Department of Agriculture announced the release of Carolina Crowder southernpea on 12 October 1990. The new cultivar is well adapted for production throughout the southern U.S., where it can be expected to produce excellent yields of high quality, crowder-type peas. Carolina Crowder is resistant to the cowpea curculio, the major insect pest of the southernpea in southeastern production areas; blackeye cowpea mosaic virus, an important virus pathogen of southernpea in the United States; and root-knot, a severe root disease incited by several species of the root-knot nematode. Canned samples of fresh Carolina Crowder peas scored well in three years of quality evaluation tests. Pod color is a brilliant red at early green-shell maturity and a brilliant red heavily shaded with cranberry colored pigment at optimum green-shell maturity. The attractive pod color should make Carolina Crowder an excellent candidate for fresh market use. Carolina Crowder plants have a greater tendency to produce a second crop than plants of most southernpea cultivars.


1998 ◽  
Vol 25 (2) ◽  
pp. 119-123 ◽  
Author(s):  
J. L. Starr ◽  
C. E. Simpson ◽  
T. A. Lee

Abstract Yields of six runner-, two spanish-, and one virginia-type breeding lines of peanut with resistance to the root-knot nematode, Meloidogyne arenaria, were compared to yields of susceptible cultivars in nematode-infested and noninfested field plots in 1996. Pod yields of resistant runner-, virginia-, and one of the spanish-type breeding lines were 1.5 to 4 times greater (P = 0.05) than pod yields of the susceptible cultivars Florunner, NC-7, and Tamspan 90 in two nematode-infested fields. Final nematode population densities on most resistant breeding lines were lower (P = 0.05) than those on the susceptible cultivars. In the noninfested field, all but one runner- and the two spanish-type resistant breeding lines had pod yields that were not different from that of the susceptible cultivars. Yields of the resistant breeding lines ranged from 3890 to 5152 kg/ha in the noninfested field. In 1997, yields of three of the runner-type breeding lines were compared to the yields of Florunner and Tamrun 96 in three fields not infested with M. arenaria. In one field, no differences were observed in pod yield among the breeding lines and cultivars; in the second field the yield of two of the breeding lines were not different from the susceptible cultivars; and in the third field, only TP259-3-5 had pod yield equivalent to that of the susceptible cultivars. These data indicate that resistant runner-type genotypes with high yield potential have been developed, but additional breeding efforts are needed to develop nematode resistance in high yielding spanish- and virginia-type peanuts.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1021A-1021
Author(s):  
Reddy R. Chinthakuntla ◽  
Frank Matta ◽  
Rao S. Mentreddy ◽  
Umesh Reddy ◽  
Padmavathi Nimmakayala ◽  
...  

Chilepepper (Capsicum spp.) is the third most important vegetable crop in the United States. The market value of chile peppers for spices and condiments exceeds $650 million per year. With a growing Hispanic population across the United States, the demand for high yielding, good quality cayenne pepper continues to increase. In order to fulfill this niche market, a study has been initiated to develop pepper varieties that combine high yield potential with superior agronomic traits, including insect and disease resistance, and fruit characteristics, using molecular marker assisted breeding/selection. In preliminary trials, several F1 generations were created through inter- and intra-specific crosses among 220 germplasm lines belonging to six Capsicumsp. in the greenhouse. Selected F1 progeny, parent lines, and selected accessions were planted in single-row field plots the following summer. The crossing success was higher within species than between. The genotypic variation was significant for all parameters examined. The average percent germination (81.1) of F1 progeny was 32% and 45% higher than that of the parent lines and selected accessions, respectively. The F1 progeny were shorter in height; more vigorous in growth, flowered early, and with fewer, but heavier, fruits per plant out-yielded the parent lines and accessions by 50% and 120%, respectively. The study showed a marked heterosis in F1 progeny compared to the parent lines and accessions. Microsatellite genotyping to estimate genetic diversity and validation of markers that are linked to various traits is in progress and will be discussed in the presentation.


EDIS ◽  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Barry L. Tillman

FloRunTM ‘331’ peanut variety was developed by the University of Florida, Institute of Food and Agricultural Sciences, North Florida Research and Education Center near Marianna, Florida.  It was released in 2016 because it combines high yield potential with excellent disease tolerance. FloRunTM ‘331’ has a typical runner growth habit with a semi-prominent central stem and medium green foliage.  It has medium runner seed size with high oleic oil chemistry.


2019 ◽  
Vol 21 (1) ◽  
pp. 165 ◽  
Author(s):  
Dennis N. Lozada ◽  
Jayfred V. Godoy ◽  
Brian P. Ward ◽  
Arron H. Carter

Secondary traits from high-throughput phenotyping could be used to select for complex target traits to accelerate plant breeding and increase genetic gains. This study aimed to evaluate the potential of using spectral reflectance indices (SRI) for indirect selection of winter-wheat lines with high yield potential and to assess the effects of including secondary traits on the prediction accuracy for yield. A total of five SRIs were measured in a diversity panel, and F5 and doubled haploid wheat breeding populations planted between 2015 and 2018 in Lind and Pullman, WA. The winter-wheat panels were genotyped with 11,089 genotyping-by-sequencing derived markers. Spectral traits showed moderate to high phenotypic and genetic correlations, indicating their potential for indirect selection of lines with high yield potential. Inclusion of correlated spectral traits in genomic prediction models resulted in significant (p < 0.001) improvement in prediction accuracy for yield. Relatedness between training and test populations and heritability were among the principal factors affecting accuracy. Our results demonstrate the potential of using spectral indices as proxy measurements for selecting lines with increased yield potential and for improving prediction accuracy to increase genetic gains for complex traits in US Pacific Northwest winter wheat.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 263-268 ◽  
Author(s):  
S. K. Gremillion ◽  
A. K. Culbreath ◽  
D. W. Gorbet ◽  
B. G. Mullinix ◽  
R. N. Pittman ◽  
...  

Field experiments were conducted in 2002 to 2006 to characterize yield potential and disease resistance in the Bolivian landrace peanut (Arachis hypogaea) cv. Bayo Grande, and breeding lines developed from crosses of Bayo Grande and U.S. cv. Florida MDR-98. Diseases of interest included early leaf spot, caused by the fungus Cercospora arachidicola, and late leaf spot, caused by the fungus Cercosporidium personatum. Bayo Grande, MDR-98, and three breeding lines, along with U.S. cvs. C-99R and Georgia Green, were included in split-plot field experiments in six locations across the United States and Bolivia. Whole-plot treatments consisted of two tebuconazole applications and a nontreated control. Genotypes were the subplot treatments. Area under the disease progress curve (AUDPC) for percent defoliation due to leaf spot was lower for Bayo Grande and all breeding lines than for Georgia Green at all U.S. locations across years. AUDPC for disease incidence from one U.S. location indicated similar results. Severity of leaf spot epidemics and relative effects of the genotypes were less consistent in the Bolivian experiments. In Bolivia, there were no indications of greater levels of disease resistance in any of the breeding lines than in Bayo Grande. In the United States, yields of Bayo Grande and the breeding lines were greater than those of the other genotypes in 1 of 2 years. In Bolivia, low disease intensity resulted in the highest yields in Georgia Green, while high disease intensity resulted in comparable yields among the breeding lines, MDR-98, and C-99R. Leaf spot suppression by tebuconazole was greater in Bolivia than in the United States. This result indicates a possible higher level of fungicide resistance in the U.S. population of leaf spot pathogens. Overall, data from this study suggest that Bayo Grande and the breeding lines may be desirable germplasm for U.S. and Bolivian breeding programs or production.


Sign in / Sign up

Export Citation Format

Share Document