scholarly journals Interaction of Culture Vessel Size, Medium Volume, and Carbon Dioxide Levels on the Growth of Various Plants in Vitro

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 515D-515
Author(s):  
Brent Tisserat ◽  
Robert Silman ◽  
Karen Ray

Ultra-high levels of CO2, i.e., >10,000 ppm, enhance tissue culture growth and offers a relatively simple and inexpensive method to improve plant productivity in vitro. Growth responses employing ultra-high CO2 levels differ considerably in the literature. Unfortunately, various culture vessels and systems have been employed, making comparisons difficult. In this study, the influence of the vessel container size, medium volume, and various CO2 concentrations (0 to 50,000 ppm) was studied on the growth obtained from lettuce and spearmint cultures. All three of these factors influence growth responses from plants cultured in vitro. Vessel types tested included: culture tubes, Magenta containers, 1-quart jars, 0.5-gallon jars, and 1-gallon jars having culture volumes of 55, 365, 925, 1850, and 3700 ml, respectively. Increasing the size of the culture vessel resulted in an increase growth regardless of the CO2 level tested. For example, fresh weight of spearmint increases of >250% can be obtained in by employing a 1-quart jar compared to using a culture tube. Increasing medium volume using various vessel types, especially using high concentrations of CO2, resulted in dramatic growth increases. For example, a >100% increase in fresh weight could be obtained by increasing the medium volume from 50 ml to 100 ml within a 1-quart jar. These studies suggest that plant growth promoted by supplemental CO2 is limited by the culture vessel size and medium volume. Differences in growth responses obtained in past CO2 studies could be related to vessel type and medium volume as well as the CO2 levels employed. Future in vitro studies should consider these factors in the evaluation of the influence of Ultra-high CO2 levels on plant growth. Peculiar growth responses, especially pertaining to rooting and shooting exhibited by cultures grown in ultra-high CO2 levels will also be discussed.

1997 ◽  
Vol 7 (3) ◽  
pp. 282-289 ◽  
Author(s):  
Brent Tisserat ◽  
Christopher Herman ◽  
Robert Silman ◽  
Rodney J. Bothast

A continuous CO2 flow system was used to study the growth of carrot (Daucus carota L.), citrus (Citrus macrophylla L.), kale (Brassica oleracea L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and tomato (Lycopersicum esculentum L.) cultures in vitro under photoautotrophic, photomixotrophic, and heterotrophic conditions. Lettuce plantlets were grown on Murashige and Skoog medium with 0%, 0.3%, 1%, and 3% sucrose within flow chambers containing 350, 750, 1500, 3000, 10,000, 30,000, and 50,000 μL·L−1 CO2. Increasing the levels of CO2, especially at the ultra-high levels (i.e., ≥3,000 μL·L−1 CO2), increased fresh weight, shoot length, leaf number, leaf length, leaf width, root number, and root length for plantlets grown regardless of sucrose levels tested compared to plantlets grown at normal atmospheric CO2 levels, i.e., 350 μL·L-1. For example, fresh weights of lettuce plantlets grown on medium containing 0% or 3% sucrose increased 11- and 13-fold, respectively, when supplemented with 30,000 μL·L-1 CO2 compared to growth of lettuce plantlets grown on the same media without CO2 enrichment. Similar fold increases in growth responses were obtained with carrot, citrus, kale, radish, and tomato plantlets grown in atmospheres enriched with high CO2 levels, elevated from 3000 to 30,000 μL·L-1. Optimum CO2 concentration varied among species, suggesting a species-related response. Varying the rate of CO2 application between 250, 500, 1500, or 2000 mL·min-1 did not effect the rate of growth of lettuce plantlets. The passive diffusion continuous flow-through system presented in this paper is inexpensive, easily constructed, and allows for testing ultra-high CO2 levels on plant culture growth in vitro.


HortScience ◽  
1990 ◽  
Vol 25 (5) ◽  
pp. 554-555
Author(s):  
Brent K. Harbaugh

Caladium × hortulanum Birdsey `Candidum' tubers were forced in pots until at least one-half the visible sprouts were 2 cm above the soil surface. These prefinished plants were subjected to simulated transit durations of 2, 4, or 6 days in the dark at 12.5, 15.5, 18.5, 21.0 or 24C. Plants were then grown for 4 weeks in a greenhouse and were either fertilized weekly with 100 ml of a solution containing 500 N-218P-415K (mg·liter-1) or were not fertilized. Interactive effects between transit duration and temperature were significant for all measured growth responses. Transit temperature maintained for 2 days had little effect on subsequent growth and only moderate effects after 4 days. With transit duration of 6 days, an increase in temperature resulted in increased plant height, fresh weight, number of leaves, white coloration of leaves, and percent of plants judged marketable (finished) in 4 weeks. Holding at ≈ 18.5C was most favorable for transit durations of 4 or 6 days. Use of fertilizer during finishing improved plant growth regardless of transit conditions, but did not totally negate deleterious effects from transit conditions.


2017 ◽  
Vol 48 (5) ◽  
Author(s):  
Al-Obaidy & Khierallah

This research was conducted to study the effect of some plant growth regulators on in vitro shoots multiplication of stevia (Stevia rebaudiana Bertoni). The experiments included tests of various combinations of KIN with IBA or IAA in the shoot multiplication. Results indicated that KIN at 1.0 mg. L-1 plus 0.3 mg. L-1 of IBA produced the highest number of shoots (3.5 shoots) while KIN at 1.5 mg. L-1 plus IBA at 1.0 mg. L-1 produced the lowest shoot length (1.14 cm).  Hormone free medium produced the highest rate of the leaves number reached 28.56 leaves. KIN and IBA interaction increased fresh and dry weight significantly.   Treatment contained 2.0 mg -1 KIN plus 0.3 mg. L-1 IBA produced the highest fresh weight (1.739 g) while 0.5 mg. L-1 KIN and 0.3 mg. L-1 IBA produced the highest dry weight (0.822 g). As for the effect of interaction between the IAA and KIN it was significant in the number of shoots formed. Interaction between 1.0 mg. L-1 KIN with 0.1 mg. L-1IAA produced the highest number of shoots (3.8 shoots). Shoots length reached 8.10 cm in the media with 0.3 mg. L-1 IAA only. The highest fresh weight (1.267 g) was achieved with the interaction between 1.0 mg. L-1 KIN and 0.3 mg. L-1 IAA while 0.5 mg. L-1IAA without KIN produced the highest dry weight reached 0.138 g.  Shoots multiplication was improved by incorporation of the cytokinin TDZ in culture media. Shoots number, fresh and dry weights were increased significantly by adding 0.05 mg. L-1 of TDZ at present of 0.3 mg. L-1 of IBA giving 6.6 shoots, 0.974 g and 0.144 g respectively while shoots length decreased significantly as media without TDZ produced the highest shoots length reached 9.32 cm. The above results can adopt for the successful in vitro shoot multiplication of Stevia plants. 


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Irina O. Averkina ◽  
Ivan A. Paponov ◽  
Jose J. Sánchez-Serrano ◽  
Cathrine Lillo

Plant growth-promoting rhizobacteria (PGPR) stimulate plant growth, but the underlying mechanism is poorly understood. In this study, we asked whether PROTEIN PHOSPHATASE 2A (PP2A), a regulatory molecular component of stress, growth, and developmental signaling networks in plants, contributes to the plant growth responses induced by the PGPR Azospirillum brasilense (wild type strain Sp245 and auxin deficient strain FAJ0009) and Pseudomonas simiae (WCS417r). The PGPR were co-cultivated with Arabidopsis wild type (WT) and PP2A (related) mutants. These plants had mutations in the PP2A catalytic subunits (C), and the PP2A activity-modulating genes LEUCINE CARBOXYL METHYL TRANSFERASE 1 (LCMT1) and PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (PTPA). When exposed to the three PGPR, WT and all mutant Arabidopsis revealed the typical phenotype of PGPR-treated plants with shortened primary root and increased lateral root density. Fresh weight of plants generally increased when the seedlings were exposed to the bacteria strains, with the exception of catalytic subunit double mutant c2c5. The positive effect on root and shoot fresh weight was especially pronounced in Arabidopsis mutants with low PP2A activity. Comparison of different mutants indicated a significant role of the PP2A catalytic subunits C2 and C5 for a positive response to PGPR.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 778F-779
Author(s):  
Brent Tisseret* ◽  
Steven Vaughn

The influence of altering the physical environment on the growth (fresh weight), morphogenesis (leaf, root, and shoot numbers) and secondary metabolism (i.e., volatile monoterpene, and carvone) of Mentha spicata L. (spearmint) shoots cultured on MS medium was studied. The type of physical support (e.g., agar, liquid, platforms, or glass supports) using Magenta vessels altered growth and morphogenesis. Mint shoots grown on liquid produced 4-x fold more fresh weight than on agar. Carvone levels were unaffected physical supports. Increasing the frequency of media replacement significantly increased growth without altering carvone. Vessel size influence was tested by culturing shoots on culture tubes, Magenta vessels and ½-gal. jars. Positive correlations occurred between vessel capacity and culture growth, morphogenesis and carvone levels. A comparative study testing several spearmint cultivars on either culture tubes or an automated plant culture system (APCS, a sterile hydroponics system) was conducted. The APCS produced more biomass (e.g., ≈15-x fold increase in fresh weight), morphogenesis and carvone than employing culture tubes. Carvone was only produced from shoots and was absent in either roots or callus. Carvone levels decreased proportionally in shoots as the distance from the shoot terminus increased. Altering the number of media culture immersions (4, 8, 12, or 16 immersions/day) with the APCS was tested. Twelve immersions of media/day was optimum. Higher culture growth rates resulted in lower carvone levels/culture; however, overall carvone levels/vessel increased due to greater biomass production.


2021 ◽  
Vol 20 (5) ◽  
pp. 119-126
Author(s):  
Burcu Tuncer

Rheum ribes L. is a perennial wild species. Young shoots and flower bunches are freshly consumed, and root and rhizomes are generally used for medicinal purposes. The aim of the present study was to improve the callus proliferation protocol for R. ribes L. under in vitro conditions. For callus induction, hypocotyl explants taken from 14-day old plantlets germinated in Murashige and Skoog (MS) media were cultured in MS media with 9 plant growth regulator (PGR) combinations containing 6-benzylaminopurine (BAP) (2, 3, and 4 mg/L) + naphthylacetic acid (NAA) (0.1, 0.5, and 1 mg/L). Then, for callus proliferation, 4 PGR combinations containing NAA (0.2 mg/L) + thidiazuron (TDZ) (0.5, 1, 2, and 3 mg) were used in the first set of experiments, and 36 PGR combinations containing BAP (1, 2, 3, and 4 mg/L) + indole-3-butyric acid (IBA) (0.2, 0.5, and 1 mg/L), BAP (1, 2, 3, and 4 mg/L) + NAA (0.2, 0.5, and 1 mg/L), and TDZ (1, 2, 3, and 4 mg/L) + NAA (0.2, 0.5, and 1 mg/L) were used in the second set of experiments. At the end of the second set of experiments, the greatest callus regeneration ratios were obtained due to the combinations including BAP and IBA as well as the low-dose TDZ- (especially 1 mg/L) and NAA- (0.2, 0.5, 1 mg/L) combinations. Regarding callus fresh weights, TDZ + NAA combinations were found to be more successful. The greatest callus fresh weight (12.7 ±0.4 g) was obtained from MS medium supplemented with 2 mg/L TDZ and 0.2 mg/L NAA.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 562a-562
Author(s):  
N.C. Yorio ◽  
C.L. Mackowiak ◽  
B.V. Peterson ◽  
R.M. Wheeler

In vitro growth of white potato (Solanum tuberosum L.) cv. Norland was investigated comparing two types of culture vessel enclosures. Nodal cuttings were aseptically transferred to 25 × 150 mm glass culture vessels containing a solidified medium consisting of Murashige and Skoog salts, 1% sucrose, and pH adjusted to 5.8. The vessels were capped with loose-fitted (1 cm gap between the top of the vessel and the top of the cap) Magenta 2-way caps or Bellco Kap-uts with calculated air changes hr-1 of 2.25 and 1.43, respectively. Instantaneous PPF attenuations of 15% for Magenta caps and 23% for Bellco caps were also measured. The cultures were maintained for 28 d in an environmental growth chamber under Daylight fluorescent lamps with a 16 hr light/8 hr dark photoperiod, 200 μmol m-2s-1 PPF maintained for each cap type, constant 23 C, 65% relative humidity, and CO2 enrichment of 1000 μmol mol-1 external to the culture vessels. Results showed that increased plantlet height, fresh weight, and dry weight was obtained for plantlets cultured with Magenta caps. The differences in growth and internal CO2 concentration of the vessels correlated well with the difference in air exchange rates, suggesting that increased air exchange of culture vessels resulted in increased mixotrophic plantlet growth.


2013 ◽  
Vol 50 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Ali Akbar Ehsanpour ◽  
Zeynab Nejati

Abstract Potato tissue culture is sensitive to ethylene accumulation in the culture vessel. Ag inhibits ethylene action but no information on nanosilver application in potato tissue culture has been published so far. In our study, potato cv. White Desiree was treated with nanosilver (0, 1.0, 1.5, and 2.0 ppm) in vitro. Leaf surface was increased, while stem length and root length decreased. Nanosilver caused also a decrease in the number of isolated protoplasts and in the viability of isolated protoplasts when applied either directly or indirectly.


Sign in / Sign up

Export Citation Format

Share Document