scholarly journals Effect of Modified-atmosphere Packaging on Aroma Profiles of Whole Apple Fruit

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 536E-536
Author(s):  
Weimin Deng ◽  
Jun Song ◽  
Randolph M. Beaudry

The effect of polymers used in packaging on the aroma of the packaged product has been little explored. Using a package-in-a-jar system, we are able to simultaneously measure volatile production by plant organ (Malus domestica Borkh. cv. Golden Delicious) and the permeability of the packaging film to those volatiles. In this system, apple fruit were placed into a glass container or sealed in a low-density polyethylene(LDPE) package and subsequently placed into a glass container. Air or a modified atmosphere was slowly passed through the glass containers such that the O2 level in the package was similar to that in containers with no package. The package and jar head spaces were sampled for CO2, O2, ethylene, and aroma volatile analysis by gas chromatography/mass spectrometry. The effect of temperature, atmosphere and film presence to some major volatile compounds was determined. When storage temperature increased from 0°C to 22°C the production rate of hexylacetate and 2-methyl butylacetate increased 11.27- and 17.15-fold, respectively. At 0°C, as O2 decreased in concentration from 10% to 5% (v/v), hexylacetate and butylacetate declined significantly; however, 2-methyl butylacetate was not affected. This can be taken to indicate the production of 2-methyl butanol for 2-methyl butylacetate formation is not as O2 concentration dependent as straight-chain alcohols. At the same O2 concentration, non-packaged fruit evolved greater amounts of all volatiles than packaged fruit. The flux of α-farnesene, hexylacetate and 2-methyl butylacetate was 26.6-, 1.7-, and 1.4-fold higher, respectively, for fruit in glass container. The sorption of α-farnesene and some other volatiles into LDPE film is evidently considerable, altering the aroma profile of packaged produce relative to a flow-through system.

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 910E-910
Author(s):  
Eric W. Gay ◽  
Randolph M. Beaudry

O2 and CO2 permeabilities were determined for experimental polyethylene polymers (Dow Plastics, Freeport, Texas) in relation to low-density polyethylene (LDPE) films for the packaging of horticultural commodities. A stainless steel flow-through permeability cell was used to determine O2 and CO2 permeabilities at 0, 5, 10, 15, 20 and 25C for the polymers. Data were fitted to the Arrhenius' relationship and the Arrhenius' constant and energy of activation were determined. In addition, flow-through containers of sealed cherry tomatoes at room temperature were used to determine ethylene permeability of the polymers. The new polymers were several times more permeable than LDPE to O2, CO2, and ethylene. The results were incorporated into a model for predicting O2 concentrations over a temperature range for sliced apple fruit. The greater permeability of the new polymers will improve control of O2 and CO2 in modified atmosphere packages and enhance flexibility of package design.


2012 ◽  
Vol 200 ◽  
pp. 351-355
Author(s):  
Peng Zhao ◽  
Lei Cao

According to the national conditions in China, this article is aiming at introducing the application statues of the modified atmosphere packaging of the fresh red meat product. It has expounded in detail the product feature of the fresh red meat and the mechanization of retaining freshness in the way of the modified atmosphere packaging. From four aspects, this article analyzes the influencing factors of the fresh red meat, such as the proportion of mixed gas, gas barrier materials, meat splitting ways and the meat storage temperature. In accordance with the market sales environment, it has discussed the specific improvement operation mode in quality of meat, the handle ability and the effect of packing, as well as the problems which should be noticed in this process. At the end, it has look into the promising future in the modified atmosphere packaging of fresh red meat products.


2017 ◽  
Vol 80 (5) ◽  
pp. 740-749 ◽  
Author(s):  
Nuria García-Martínez ◽  
Pedro Andreo-Martínez ◽  
Luis Almela ◽  
Lucía Guardiola ◽  
José A. Gabaldón

ABSTRACT In recent years the sales of minimally processed vegetables have grown exponentially as a result of changes in consumer habits. The availability of artichoke buds as a ready-to-eat product would be, therefore, highly advantageous. However, minimally processed artichoke hearts are difficult to preserve because of their rapid browning and the proliferation of naturally occurring microorganisms. We developed artichoke hearts prepared as ready-to-eat products that maintain the characteristics of the fresh product. The microbiological stability, sensory qualities, and shelf life of the processed artichoke hearts were determined. During the shelf life, Salmonella, Listeria monocytogenes, and Escherichia coli counts were below the limits legally established by European regulations for minimally processed vegetables. The pH played an important role in microbial growth. Artichoke hearts had lower microbial counts in experiments conducted at pH 4.1 than in experiments conducted at pH 4.4, although the recommended threshold value for total plate count (7 log CFU/g) was not exceeded in either case. Sensory parameters were affected by the microorganisms, and artichoke products at lower pH had better sensory qualities. Vacuum impregnation techniques, modified atmosphere packaging, and low storage temperature were very effective for increasing the shelf life of minimally processed artichokes. The average shelf life was approximately 12 to 15 days.


2015 ◽  
Vol 49 (6) ◽  
Author(s):  
R. A. Patil ◽  
D. V. Sudhakar Rao ◽  
B. Manasa

Custard apple, a tropical fruit, is underutilized because of its poor storability. Researchers have worked on various aspects for improving the storage life of fruits; still its storage life is limited to few days. So to counteract this, an experiment was conducted to study the effect of modified atmosphere packaging using three different kinds of films along with low temperature storage at 8, 12 and 15 °C and observations were recorded at weekly interval. The study indicated an increasing trend in the respiration rate and ethylene production rate as well, and the rate increased with increase in storage temperature and duration. The physiological loss in weight in packed fruits showed a drastic reduction. Titratable acidity increased as storage duration while ascorbic acid shown exact reverse trend. There was significant increase in reducing sugar and total sugar as duration increased but rate was low in 8° C fruits.


LWT ◽  
2004 ◽  
Vol 37 (8) ◽  
pp. 817-826 ◽  
Author(s):  
G.A. González-Aguilar ◽  
J.F. Ayala-Zavala ◽  
S. Ruiz-Cruz ◽  
E. Acedo-Félix ◽  
M.E. Dı́az-Cinco

HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 684-686 ◽  
Author(s):  
R.J. Bender ◽  
J.K. Brecht ◽  
E.A. Baldwin ◽  
T.M.M. Malundo

To determine the effects of fruit maturity, storage temperature, and controlled atmosphere (CA) on aroma volatiles, mature-green (MG) and tree-ripe (TR) `Tommy Atkins' mangoes (Mangifera indica L.) were stored for 21 days in air or in CA (5% O2 plus 10% or 25% CO2). The MG fruit were stored at 12 °C and the TR fruit at either 8 or 12 °C. Homogenized mesocarp tissue from fruit that had ripened for 2 days in air at 20 °C after the 21-day storage period was used for aroma volatile analysis. The TR mangoes produced much higher levels of all aroma volatiles except hexanal than did MG fruit. Both MG and TR mangoes stored in 25% CO2 tended to have lower terpene (especially p-cymene) and hexanal concentrations than did those stored in 10% CO2 and air-stored fruit. Acetaldehyde and ethanol levels tended to be higher in TR mangoes from 25% CO2 than in those from 10% CO2 or air storage, especially at 8 °C. Inhibition of volatile production by 25% CO2 was greater in MG than in TR mangoes, and at 8 °C compared to 12 °C for TR fruit. However, aroma volatile levels in TR mangoes from the 25% CO2 treatment were in all cases equal to or greater than those in MG fruit treatments. The results suggest that properly selected atmospheres, which prolong mango shelf life by slowing ripening processes, can allow TR mangoes to be stored or shipped without sacrificing their superior aroma quality.


Sign in / Sign up

Export Citation Format

Share Document