scholarly journals Somatic Embryogenesis in Commercial Crops—An Overview

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 549D-549
Author(s):  
Joseph Thomas ◽  
D. Sreedhar ◽  
S. Murali ◽  
S. Jose ◽  
K.Gopal Krishnan ◽  
...  

Many researchers regard somatic embryogenesis as a system of choice for in vitro propagation of superior varieties of crops such as coffee, mango, datepalm, and rose. While there are advantages, commercialization has not been possible so far in coffee, mango, and rose. The work highlights some reasons for this and feasible alternatives. We have established somatic embryogenesis in four elite Indian arabica coffee genotypes. Plantlets (3500) of all the four varieties are now being field-evaluated. The cost of producing these propagules is 15 times the seedling cost at present. A major constraint is the long time (6 months) needed to reach the five-leaf stage in vitro prior to release for acclimatization. This period can be reduced to 2 months using exvitro development after the two leaf stage. There are many reports of somatic embryogenesis in mango. Results on establishing free-living plantlets have not been encouraging.We found a number of abnormalities in the shape of the somatic embryos in cv. Rumani. However, except for the “rod”-shaped ones (that lacked cotyledonary expansion), all embryos germinated satisfactorily (75% rooting).We have encouraging results in reducing the time required to generate suitable plantlets for field acclimatization and in standardizing the procedures for grafting. Our laboratory has developed methods for ex vitro germination of mature embryos in datepalm,which yield more numbers of free-living plantlets (50%–60%) in only 3 months with an average of four leaves per plant. This compared favorably with in vitro germination that takes 6 months and produces plantlets with one or two leaves only. A novel protocol for obtaining somatic embryogenesis in rose from petal derived calli was developed by us (Murali et al., 1996). The number of embryos induced was too low for commercial application. [Murali et al., 1996. Euphytica 91:271–275].

Author(s):  
Gilang Maulana Alif ◽  
Irfiani Nurul Mawaddah ◽  
Fikaputri Rohmatul ◽  
Zel Andesra

<h1><em>Essential oil of ginger (zingiberene oil (C<sub>15</sub>H<sub>24</sub>)) is one of the diversified products that have high selling value. Most of the essential ginger products available in the market haven’t allow the standard export products, based on the Essential Oil Association of USA (EOA) standards. The low quality of ginger essential oil products is due to its production process with conventional distillation. This method is most often used because it is easy to operate and produce a good enough product but takes a long time. Another extract method developed is Microwave Distillation and Simultaneous Solid-Phase Microexctraction (MDSS- PM). In this method the time required is faster but the resulting product is not as good as Hydrodistillation product and requires high energy. In this research, ginger extraction process using Microwave Distillation method is modified by ultrasonic addition technique (MUSDf). The variables used in this research are Steam Diffusion (SDF) method, Microwave Exctraction (ME), Microwave Steam Diffusion (MSDf), Microwave Ultrasonic Steam Diffusion (MUSDf) with 30, 50,70, 90 and 110 minutes extension time and extraction temperature variations of 90, 95, 100 and 1050C. From the result of the research, it is found that the best method to produce ginger oil extract is by using MUSDf method with yield of 0.952%, zingiberene level is 6.38%, and the cost per gram of oil is Rp 17,964.</em></h1>


2010 ◽  
Vol 2 (2) ◽  
pp. 60-63 ◽  
Author(s):  
Muhammad AASIM

Cowpea (Vigna unguiculata L.) is an economically important grain legume crop and is an important source of dietary protein in many of the developing countries. The present study reports the effect of pulse treatment duration, concentration of NAA and presence of NAA in the culture medium on shoot regeneration from plumular leaf explant of Turkish cowpea cv. ‘Akkiz’ and ‘Karagoz’. Pulse treatment of mature embryos with 20 mg l-1 NAA for 1 and 3 weeks followed by culturing of plumular leaf explant on MS medium containing 0.25, 0.50 and 1.0 BAP with 1.0, 2.0 and 4.0 mg l-1 NAA promoted somatic embryogenesis in both cultivars. Longer duration of pulse treatment was deleterious resulting in browning and consequently death of the embryos on explants. Pulse treatment with 20 mg l-1 NAA for one week was less deleterious and developed two plantlets after the explants were transferred to MS0 medium after 6 weeks through somatic embryogenesis in cv. ‘Akkiz’. Pulse treatment with 10 mg l-1 NAA for 1 week showed 33.33-50.00% and 25.00-50.00% shoot regeneration frequency in cv. ‘Akkiz’ and ‘Karagoz’ respectively on MS medium containing 0.25-1.00 mg l-1 BAP. Maximum number of 2.50 shoots each per explant were recorded in cv. ‘Akkiz’ and ‘Karagoz’ on MS medium containing 1.00 and 0.50 mg l-1 BAP respectively. Contrarily, maximum shoot length of 8.98 cm of cv. ‘Akkiz’ and 9.42 cm of cv. ‘Karagoz’ was recorded on MS medium containing 0.50 mg l-1 BAP and 1.00 mg l-1 BAP respectively. Regenerated shoots were rooted on MS medium containing 0.5 mg l-1 IBA and and acclimatized in growth room at room temperature where they produced viable seeds.


2021 ◽  
Author(s):  
Pranav Shah ◽  
Milan Patel ◽  
Jigar Shah ◽  
Anroop Nair ◽  
Sabna Kotta ◽  
...  

Abstract The objective of the present study was to evaluate the potential of solid dispersion adsorbate to improve the solubility and bioavailability of rivaroxaban (RXN). Solid dispersion adsorbate (SDA) of RXN was developed by fusion method using PEG 4000 as carrier and Neusilin as adsorbent. A 32 full factorial design was utilized to formulate various SDAs. The selected independent variables were amount of carrier (X1) and amount of adsorbate (X2). The responses measured were time required for 85% drug release (Y1) and saturated solubility (Y2). MTT assay was employed for cytotoxicity studies on Caco-2 cells. In vivo pharmacokinetics and pharmacodynamic evaluations were carried out to assess the prepared SDA. Pre-compression evaluation of SDA suggests the prepared batches (B1-B9) possess adequate flow properties and could be used for compression of tablets. Differential scanning calorimetry and X-ray diffraction data signified the conversion of crystalline form of drug to amorphous form, a key parameter accountable for improvement in drug dissolution. Optimization data suggests that the amount of carrier and amount of adsorbate significantly (P < 0.05) influence both dependent variables (time required for 85% drug release and saturated solubility). Post-compression data signifies that the compressibility behavior of prepared tablets were within the official standard limits. Significant increase (P < 0.0001) in the in vitro dissolution characteristics of RXN was noticed in optimized SDA (>85% in 10 min) as compared to pure drug, marketed product and directly compressible tablet. Cytotoxicity studies confirm nontoxicity of prepared RXN SDA tablets. Higher Cmax and AUC achieved with RXN SDA tablets indicated enhancement in oral bioavailability (~3 folds higher than the RXN suspension). Higher bleeding time and percentage of platelet aggregation noticed with RXN SDA tablets further substantiate the efficacy of the prepared formulation. In summary, the results showed the potential of RXN SDA tablets to enhance the bioavailability of RXN and hence can be an alternate approach of solid dosage form for its development for commercial application.


2014 ◽  
Vol 63 (3-4) ◽  
pp. 259-263 ◽  
Author(s):  
J. A. Tarkowska ◽  
D. Brzostecka ◽  
W. Burza ◽  
S. Malepszy

Under in vivo conditions early-globular embryos occur in cucumber on the 9th day after pollination, heart-shaped ones on the 14th, and morphologically mature embryos appear on the 19th day. Single starch grains already appear in the cells of the globular embryo, and in the heart-shaped one they occur within the forming root cap. In the morphologically mature embryo only the precambium is free from starch. Somatic embryogenesis (SE) in suspension occurs similarly as in vivo, even though the starch localization is somewhat different and torpedo-like embryos occur, which are not observed in vivo. The histological structure of in vitro embryos is similar to in vivo ones, and the greatest morphological difference are the poorly developed cotyledons and their variable number (1 to 3). Aggregates showing fluorescence were found to be composed of cells which differ in morphology from cells not showing fluorescence and appear to be more capable of attaining the mature stages.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 761
Author(s):  
Arun Kumar Khajuria ◽  
Christophe Hano ◽  
Narendra Singh Bisht

Viola canescens Wall. ex. Roxb. is an important but threatened medicinal herb found at 1500–2400 m above mean sea level in the Himalayas. Overexploitation and habitat preference have put the plant under serious threat. Thus, the present study was undertaken to develop an efficient protocol for in vitro propagation via somatic embryogenesis. The results revealed that plant can be regenerated successfully through somatic embryogenesis using leaf derived calli. Regular subculturing of calli on Murashige and Skoog (MS) medium with 2,4-dichlorophenoxyacetic acid (2,4-D)/indole-3-butyric acid (IBA)/kinetin (Kn) and varying combinations of 2,4-D+Kn induced somatic embryogenesis. The maximum average number of somatic embryos (SE) (19.15 ± 2.66) was induced on the medium with 0.15 + 0.05 mg L−1 of 2,4-D and Kn, respectively, and this medium was used as a control. To enhance somatic embryo induction, the control MS medium was supplemented with l-glutamine (200–400 mg L−1) and casein hydrolysate (1–4%). The maximum average number of SE (27.66 ± 2.67) and average mature SE (13.16 ± 3.48) were recorded on the medium having 2 % l-glutamine and 50 mg L−1 casein hydrolysate. The induced SE were asynchronous, so, to foster their maturation, the culture medium (free from growth regulators) was supplemented with abscisic acid (ABA) and silver nitrate (AgNO3). The maximum average number (35.96 ± 3.68) of mature SE was noticed on MS medium supplemented with 1.5 mg L−1 ABA. Mature embryos had two well-developed cotyledons and an elongated hypocotyl root axis. The development of SE into plantlets was significant for embryos matured on the medium with AgNO3 and ABA, with 86.67% and 83.33% conversion on the medium with 0.20 mg L−1 6-benzylaminopurine (BAP). The plantlets thus produced acclimatized in a growth chamber before being transferred to the field, which showed 89.89% survival. The plants were morphologically similar to the mother plant with successful flowering.


2002 ◽  
Vol 59 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Adriana Patrícia Ricci ◽  
Francisco de Assis Alves Mourão Filho ◽  
Beatriz Madalena Januzzi Mendes ◽  
Sonia Maria de Stefano Piedade

Most of the plant regeneration processes in citrus, through tissue culture, involve indirect somatic embryogenesis. The optimization of these processes is important for the development of in vitro plant improvement and micropropagation studies. Studies to evaluate the effect of different carbohydrates in somatic embryogenesis were conducted using calli from 'Ponkan' mandarin (Citrus reticulata, Blanco), 'Cravo' mandarin (C. reticulata), 'Itaboraí' sweet orange (C. sinensis L. Osbeck.), 'Valencia' sweet orange (C. sinensis) and 'Kinnow' mandarin (C. nobilis Loureiro x C. deliciosa Tenore). The culture medium used was MT supplemented with sucrose, galactose, glucose, maltose or lactose with the following concentrations of 18, 37, 75, 110, and 150 mM. The culture medium used for the maturation of somatic embryos had 0, 15, 29, 44, 58 and 73 mM of sucrose, in presence or absence of 0.5 g L<FONT FACE=Symbol>-</FONT>1 of activated charcoal. Seventy-three mM of sucrose with 0.1 mg L<FONT FACE=Symbol>-</FONT>1 of GA3 in the presence or absence 0.5 g L<FONT FACE=Symbol>-</FONT>1 of activated charcoal was also tested. Overall, the carbohydrates galactose or lactose induced a higher number of somatic embryos. Sucrose concentrations of 58 and 73 mM generated a higher number of plantlets from mature embryos of 'Ponkan' mandarin and 'Valencia' sweet orange.


HortScience ◽  
2020 ◽  
Vol 55 (4) ◽  
pp. 424-428 ◽  
Author(s):  
Alvine Ornella Tchouga ◽  
Vincent Deblauwe ◽  
Stephanie Astride Mouafi Djabou ◽  
Giovanni Forgione ◽  
Rachid Hanna ◽  
...  

The jet-black to streaked ebony wood produced by the African ebony (Diospyros crassiflora Hiern, Ebenaceae) is exploited in Central and West Africa. A conservation effort is currently underway in Cameroon to propagate the tree through seedlings and cuttings. However, the intermittent availability of its seeds and the long time required for rooting formation of cuttings are limiting its propagation. This study aims to develop a successful protocol for ebony micropropagation. In vitro culture of nodal segments from seedlings was performed in half-strength Murashige and Skoog (MS) medium supplemented with either zeatin (0.0, 2.3, 4.6, 9.1, 13.7, 18.2, 22.8, and 27.4 µm) or 6-benzylaminopurine (BAP) (0.0, 2.2, 4.4, 8.8, 13.3, 17.8, 22.2, and 26.6 µm). After 12 weeks, all media allowed shoot budbreak. Shoots displaying the greatest budbreak were observed with 22.8 µm zeatin and 22.2 µm BAP. The shoots were then transferred to a medium supplemented with indole-3-butyric acid (IBA) and phloroglucinol (PG) at different concentrations for root induction. Root induction was observed on the shoots initially induced in the medium with BAP, but not in those grown in the medium with zeatin. In half-strength MS supplemented with 396.5 µm PG plus 14.2 µm IBA, the formation of a single tap root was observed on 79% of shoots, with an average root length of 2.8 ± 0.18 cm. Rooted plants were successfully acclimatized to the greenhouse, with a 50% survival rate. This is the first report on Diospyros crassiflora micropropagation, which paves the way for rapid ebony multiplication to respond to needed conservation efforts.


2019 ◽  
Vol 10 (4) ◽  
pp. 438-447
Author(s):  
Antonio Flávio Arruda Ferreira ◽  
Marcela Sant'anna Cordeiro da Silva ◽  
Laís Naiara Honorato Monteiro ◽  
Glaucia Amorim Faria ◽  
Aparecida Conceição Boliani ◽  
...  

There has been a lack of research on the propagation methods of tamarind, hindering the availability and supply of its products. Considering the nutraceutical potential of tamarind and the long-time required to initiate production, this study aimed to evaluate the establishment of nodal segments and the germination of in vitro zygotic embryos of tamarind plants in culture media, salt concentrations, and activated charcoal, aiming at the establishment of an in vitro propagation protocol. For this purpose, MS and WPM media with 25, 50, 75 and 100% salt concentrations were used both with and without activated charcoal (2 g L-1) for the inoculation of nodal segments and zygotic embryos of tamarind. The experiment was conducted in a completely randomized experimental design, in a 2 x 4 x 2 factorial scheme (culture media x salt concentrations x activated charcoal) with 20 replications. It was observed that the in vitro establishment of tamarind nodal segments is viable when using the MS medium with 75% of salts plus 2 g L-1 of activated charcoal and that for the germination of zygotic embryos there was no influence of the treatments. It was also observed that in order to increase the length of the formed plantlets, the MS and WPM media can be employed with 75% of salts.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 29-35 ◽  
Author(s):  
PETER W. HART ◽  
DALE E. NUTTER

During the last several years, the increasing cost and decreasing availability of mixed southern hardwoods have resulted in financial and production difficulties for southern U.S. mills that use a significant percentage of hardwood kraft pulp. Traditionally, in the United States, hardwoods are not plantation grown because of the growth time required to produce a quality tree suitable for pulping. One potential method of mitigating the cost and supply issues associated with the use of native hardwoods is to grow eucalyptus in plantations for the sole purpose of producing hardwood pulp. However, most of the eucalyptus species used in pulping elsewhere in the world are not capable of surviving in the southern U.S. climate. This study examines the potential of seven different cold-tolerant eucalyptus species to be used as replacements for, or supplements to, mixed southern hardwoods. The laboratory pulping and bleaching aspects of these seven species are discussed, along with pertinent mill operational data. Selected mill trial data also are reviewed.


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


Sign in / Sign up

Export Citation Format

Share Document