scholarly journals 157 Estimation of Environmental Impact of Two Cropping Systems Using PLANETOR

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 469B-469
Author(s):  
A. Kalo ◽  
P.H. Hoepner ◽  
S.B. Sterrett ◽  
J.F. Diem

Long-term goals of reducing environmental impacts associated with agricultural activities must include economic sustainability as well as production feasibility. This study compared the potential economic and environmental impact of two specific cropping systems [wheat/soybeans (w/s) vs. selected vegetable crops with wheat/soybeans (veg/w/s)]. Profitability of w/s was lower than the veg/w/s system but demanded a smaller, less extensive resource base of labor and machinery with fewer conflicts in resource utilization rates. The PLANETOR computer program (Univ. of Minnesota) was used to analyze the potential negative environmental effects of growing a particular crop mix within these two systems. Although some of the vegetable crops exceeded the targeted soil loss tolerance value (T-value) of 3 t/ha, the weighted average of the veg/w/s system was below the target T-value for soil erosion. Analyses suggest that the profits from vegetables in the veg/w/s production more than offset the negative impacts on soil erosion and the veg/w/s system would be more economically feasible than w/s. Potential impact of pesticide leaching and runoff from vegetable production as calculated by PLANETOR was less than that from w/s. Specific cultural practices, including soil/tissue testing to manage nutrient applications, could reduce nitrogen/phosphorus movement. The veg/w/s system may offer the necessary profit margins to allow adoption of more environmentally friendly production alternative.

Genome ◽  
2021 ◽  
Author(s):  
Muhammad Jakir Hasan ◽  
Swati Megha ◽  
Habibur Rahman

Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques and ‘omics’ research have helped to identify several major loci, QTL and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.


Author(s):  
Noureddine Benkeblia

Abstract Vegetable production in Jamaica, and throughout the world, faces many diseases that affect the yield and the quality of the fresh harvest produce. However, some diseases are more predominant than others. The most observed diseases of vegetables are anthracnose, leaf spot, club root, downy mildew, gray mold, mosaic and geminiviruses, early blight, septoria leaf spot and leaf rusts. Nevertheless, other diseases can also be found seriously affecting the grown vegetable. Greenhouse cropping systems are also affected by similar and other diseases such as septoria leaf spot, early blight, anthracnose, fusarium wilt, verticillium wilt, late blight, bacterial spot, bacterial speck, bacterial canker, gray mold, leaf mold, powdery mildew and elephant's foot disease. Although not specific to the country, other diseases are also found more frequently than others, and the frequency varies with the region and the cropping system (indoor or outdoor).


Author(s):  
Qiang Wang ◽  
Shanlian Yang ◽  
Menglei Zheng ◽  
Fengxiang Han ◽  
Youhua Ma

Metal(loid) pollution in vegetable field soils has become increasingly severe and affects the safety of vegetable crops. Research in China has mainly focused on greenhouse vegetables (GV), while open field vegetables (OV) and the spatial distribution patterns of metal(loid)s in the surrounding soils have rarely been assessed. In the present study, spatial analysis methods combining Geographic Information Systems (GIS) and Moran’s I were applied to analyze the effects of vegetable fields on metal(loid) accumulation in soils. Overall, vegetable fields affected the spatial distribution of metal(loid)s in soils. In long-term vegetable production, the use of large amounts of organic fertilizer led to the bioconcentration of cadmium (Cd) and mercury (Hg), and long-term fertilization resulted in a significant pH decrease and consequent transformation and migration of chromium (Cr), lead (Pb), and arsenic (As). Thus, OV fields with a long history of planting had lower average pH and Cd, and higher average As, Cr, Hg, and Pb than GV fields, reached 0.93%, 10.1%, 5.8%, 3.0%, 80.8%, and 0.43% respectively. Due to the migration and transformation of metal(loid)s in OV soils, these should be further investigated regarding their abilities to reduce the accumulation of metal(loid)s in soils and protect the quality of the cultivated land.


2017 ◽  
Vol 27 (2) ◽  
pp. 162-165 ◽  
Author(s):  
Monica Ozores-Hampton

Compost is primarily a soil-amending product that may improve soil quality and the productivity of organic and conventional vegetable crops. Growers can use compost as a soil conditioner or as nutrient source to supplement the fertility program in vegetable production. Nutrients such as nitrogen, phosphorous, and potassium may be low. To lower the environmental impact of high compost application rates and protect water supplies from excessive nutrient runoff or leaching, or an excessive soil nutrient buildup, compost should be applied to match the nutrient needs of a crop. Compost quality use guidelines for assessing compost quality for use in vegetable production are limited. The objective of this paper is to present guidelines for determining compost quality for use in organic or conventional vegetable production.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 600-603 ◽  
Author(s):  
Nancy G. Creamer ◽  
Keith R. Baldwin

Summer cover crops can produce biomass, contribute nitrogen to cropping systems, increase soil organic matter, and suppress weeds. Through fixation of atmospheric N2 and uptake of soil residual N, they also contribute to the N requirement of subsequent vegetable crops. Six legumes {cowpea (Vigna unguiculata L.), sesbania (Sesbania exaltata L.), soybean (Glycine max L.), hairy indigo (Indigofera hirsutum L.), velvetbean [Mucuna deeringiana (Bort.) Merr.], and lablab (Lablab purpureus L.)}; two nonlegume broadleaved species [buckwheat (Fagopyrum esculentum Moench) and sesame (Sesamum indicum L.)]; and five grasses {sorghum-sudangrass [Sorghum bicolor (L) Moench × S. sudanense (P) Stapf.], sudangrass [S. sudanense (P) Stapf.], Japanese millet [Echinochloa frumentacea (Roxb.) Link], pearl millet [Pennisetum glaucum (L). R. Br.], and German foxtail millet [Setaria italica (L.) Beauv.)]}, were planted in raised beds alone or in mixtures in 1995 at Plymouth, and in 1996 at Goldsboro, N.C. Biomass production for the legumes ranged from 1420 (velvetbean) to 4807 kg·ha-1 (sesbania). Low velvetbean biomass was attributed to poor germination in this study. Nitrogen in the aboveground biomass for the legumes ranged from 32 (velvetbean) to 97 kg·ha-1 (sesbania). All of the legumes except velvetbean were competitive with weeds. Lablab did not suppress weeds as well as did cover crops producing higher biomass. Aboveground biomass for grasses varied from 3918 (Japanese millet) to 8792 kg·ha-1 (sorghum-sudangrass). While N for the grasses ranged from 39 (Japanese millet) to 88 kg·ha-1 (sorghum-sudangrass), the C: N ratios were very high. Additional N would be needed for fall-planted vegetable crops to overcome immobilization of N. All of the grass cover crops reduced weeds as relative to the weedy control plot. Species that performed well together as a mixture at both sites included Japanese millet/soybean and sorghum-sudangrass/cowpea.


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 170a-170
Author(s):  
Victor A. Wegrzyn

Sustainable production systems are characterized as systems that can be physically and biologically maintained in perpetuity, can avoid adverse environmental and health problems, and can be economically profitable. Organic vegetable production systems are one example of sustainable farming enterprises. In California, organic production and postharvest handling techniques are closely defined by legislation. Of the several grower groups representing organic farmers in the state, the California Certified Organic Farmers is the largest, representing 382 growers that farmed a total area of 10,375 ha in 1988. Of these, 200 growers are vegetable producers. Another organization active among organic growers in California, as well as Mexico, Central American countries, and the Caribbean, is the Organic Crop Improvement Association. Marketing organizations such as the Nutri-Clean Program, which tests produce for pesticide residues and certifies specific residue standards, and the Organic Market News and Information Service facilitate the sale of organic produce in California. Cultural practice information for organic vegetable production is difficult to find, particularly techniques that would allow a grower to switch from conventional to organic production. University researchers and extension workers have so far been of little help, although the Univ. of California Sustainability Program at Davis is beginning research and education activities. Funding for these activities is inadequate, and the program is understaffed. There is need for long-term, interdisciplinary, on-farm studies to study organic production techniques in a realistic setting. At present, the reward system in place in land-grant institutions offers little encouragement to researchers to engage in this kind of work. There are formidable obstacles to increasing the use of organic materials for crop fertilization. The nutrient content of the state's manure and organic waste supplies is probably insufficient to meet the fertility needs of California's crops. In addition, since the majority of land currently producing vegetable crops in California is leased, long-term soil fertility investments are a risky undertaking.


2021 ◽  
Author(s):  
Kassio Ferreira Mendes ◽  
Kamila Cabral Mielke ◽  
Marcelo Rodrigues dos Reis ◽  
Lucas Guilherme Hahn Kehl ◽  
Leandro Tropaldi ◽  
...  

An integrated weed management system is perfectly aligned with the aim of producing healthy and environmentally sustainable vegetables. This integrated management is fundamental for vegetables, more than in other crops, due to its high commercial value, intensive culture, lack of competitiveness and low availability of registered herbicides. The integration of available weed control methods with a long-term strategy based on preventive and agronomic (cultural) practices is necessary to obtain a desired level of control, decrease the accumulation of the weed seed bank, increase weed diversity and decrease herbicide dependence and minimize their negative impacts. Thus, this book provides essential and updated subjects of information regarding the general characteristics of tuberous vegetables, critical periods of control, main weeds in the crop, integrated management methods (preventive, cultural, physical, mechanical, biological and chemical); and it is intended for professors, researchers, extensionist, undergraduate and graduate students, rural producers and other professionals involved in the area of weed science.


2020 ◽  
Author(s):  
Kassio Ferreira Mendes

An integrated weed management system is perfectly aligned with the aim of producing healthy and environmentally sustainable vegetables. This integrated management is fundamental for vegetables, more than in other crops, due to its high commercial value, intensive culture, lack of competitiveness and low availability of registered herbicides. The integration of available weed control methods with a long-term strategy based on preventive and agronomic (cultural) practices is necessary to obtain a desired level of control, decrease the accumulation of the weed seed bank, increase weed diversity and decrease herbicide dependence and minimize their negative impacts. Thus, this book provides essential and updated subjects of information regarding the general characteristics of fruit vegetables, critical periods of control, main weeds in the crop, integrated management methods (preventive, cultural, physical, mechanical, biological and chemical); and it is intended for professors, researchers, extensionist, undergraduate and graduate students, rural producers and other professionals involved in the area of weed science.


2021 ◽  
Vol 4 ◽  
Author(s):  
Anna Landwehr

Widespread use of synthetic chemical insecticides causes growing concern regarding the risks to human health and negative impacts on the environment. At the same time, many insects have become resistant toward synthetic chemical insecticides. Baculoviruses bring many benefits and allow reduced use of synthetic insecticides when included in integrated pest management (IPM). They are specific to their target pest and thus do not have any negative effects on plants, mammals, and non-target insects including natural enemies and pollinators. In addition, their unique mode of action makes them suitable for resistance management. We provide examples of how baculoviruses can be applied in IPM strategies for open field and protected vegetable crops. In field trials, baculovirus products were applied in rotations and tankmixes with chlorantraniliprole, Bacillus thuringiensis products, and spinosad and provided promising control of target pests. The conducted trials in open field and protected vegetables show that baculoviruses can offer an effective solution to control pests in open field and protected vegetable production. Including baculoviruses gave results as good as other application strategies tested while conferring important benefits in reducing residues and improving the resistance management strategy.


Sign in / Sign up

Export Citation Format

Share Document