scholarly journals 588 Photosystem II Efficiency and CO2 Assimilation in Response to Light and CO2 in Leaves of Deciduous Tree Fruit

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 548B-548
Author(s):  
Lailiang Cheng ◽  
Leslie H. Fuchigami ◽  
Patrick J. Breen

Photosystem II (PSII) efficiency and CO2 assimilation in response to photon flux density (PFD) and intercellular CO2 concentration (Ci) were monitored simultaneously in leaves of apple, pear, apricot, and cherry with a combined system for measuring chlorophyll fluorescence and gas exchange. When photorespiration was minimized by low O2 (2%) and saturated CO2 (1300 ppm), a linear relationship was found between PSII efficiency and the quantum yield for CO2 assimilation with altering PFD, indicating CO2 assimilation in this case is closely linked to PSII activity. As PFD increased from 80 to 1900 μmol·m–2·s–1 under ambient CO2 (350 ppm) and O2 (21%) conditions, PSII efficiency decreased by increased nonphotochemical quenching and decreased concentration of open PSII reaction centers. The rate of linear electron transport showed a similar response to PFD as CO2 assimilation. As Ci increased from 50 to 1000 ppm under saturating PFD (1000 μmol·m–2·s–1) and ambient O2, PSII efficiency was increased initially by decreased nonphotochemical quenching and increased concentration of open PSII reaction centers and then leveled off with further a rise in Ci. CO2 assimilation reached a plateau at a higher Ci than PSII efficiency because increasing Ci diverted electron flow from O2 reduction to CO2 assimilation by depressing photorespiration. It is concluded that PSII efficiency is regulated by both nonphotochemical quenching and concentration of open PSII reaction centers in response to light and CO2 to meet the requirement for photosynthetic electron transport.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1172 ◽  
Author(s):  
Claudia Elkins ◽  
Marc W. van Iersel

Controlled environment crop production recommendations often use the daily light integral (DLI) to quantify the light requirements of specific crops. Sole-source electric lighting, used in plant factories, and supplemental electric lighting, used in greenhouses, may be required to attain a specific DLI. Electric lighting is wasteful if not provided in a way that promotes efficient photochemistry. The quantum yield of photosystem II (ΦPSII), the fraction of absorbed light used for photochemistry, decreases with increasing photosynthetic photon flux density (PPFD). Thus, we hypothesized that the daily photochemical integral (DPI), the total electron transport through photosystem II (PSII) integrated over 24 h, would increase if the same DLI was provided at a lower PPFD over a longer photoperiod. To test this, ΦPSII and the electron transport rate (ETR) of lettuce (Lactuca sativa ‘Green Towers’) were measured in a growth chamber at DLIs of 15 and 20 mol m−2 d−1 over photoperiods ranging from 7 to 22 h. This resulted in PPFDs of 189 to 794 μmol m−2 s−1. The ΦPSII decreased from 0.67 to 0.28 and ETR increased from 55 to 99 μmol m−2 s−1 as PPFD increased from 189 to 794 μmol m−2 s−1. The DPI increased linearly as the photoperiod increased, but the magnitude of this response depended on DLI. With a 7-h photoperiod, the DPI was ≈2.7 mol m−2 d−1, regardless of DLI. However, with a 22-h photoperiod, the DPI was 4.54 mol m−2 d−1 with a DLI of 15 mol m−2 d−1 and 5.78 mol m−2 d−1 with a DLI of 20 mol m−2 d−1. Our hypothesis that DPI can be increased by providing the same DLI over longer photoperiods was confirmed.


2017 ◽  
Vol 114 (33) ◽  
pp. E7002-E7008 ◽  
Author(s):  
Lauriebeth Leonelli ◽  
Matthew D. Brooks ◽  
Krishna K. Niyogi

Although sunlight provides the energy necessary for plants to survive and grow, light can also damage reaction centers of photosystem II (PSII) and reduce photochemical efficiency. To prevent damage, plants possess photoprotective mechanisms that dissipate excess excitation. A subset of these mechanisms is collectively referred to as NPQ, or nonphotochemical quenching of chlorophyll a fluorescence. The regulation of NPQ is intrinsically linked to the cycling of xanthophylls that affects the kinetics and extent of the photoprotective response. The violaxanthin cycle (VAZ cycle) and the lutein epoxide cycle (LxL cycle) are two xanthophyll cycles found in vascular plants. The VAZ cycle has been studied extensively, owing in large part to its presence in model plant species where mutants are available to aid in its characterization. In contrast, the LxL cycle is not found in model plants, and its role in photosynthetic processes has been more difficult to define. To address this challenge, we introduced the LxL cycle into Arabidopsis thaliana and functionally isolated it from the VAZ cycle. Using these plant lines, we showed an increase in dark-acclimated PSII efficiency associated with Lx accumulation and demonstrated that violaxanthin deepoxidase is responsible for the light-driven deepoxidation of Lx. Conversion of Lx to L was reversible during periods of low light and occurred considerably faster than rates previously described in nonmodel species. Finally, we present clear evidence of the LxL cycle’s role in modulating a rapid component of NPQ that is necessary to prevent photoinhibition in excess light.


1991 ◽  
Vol 46 (11-12) ◽  
pp. 1059-1062 ◽  
Author(s):  
Walter Oettmeier ◽  
Silvana Preuße ◽  
Michael Haefs

Thiazolylidene-ketonitriles are efficient inhibitors of photosynthetic electron flow in reaction centers from either Rhodobacter sphaeroides or Rhodobacter capsulatus. Some compounds of this class exhibit a higher inhibitory potency in the bacterial system as compared to photosystem II. Up to now, photosystem II inhibitors were generally less active in photosynthetic bacteria. An azido-thiazolylidene-ketonitrile upon illumination almost exclusively tags the L-subunit in the bacterial reaction center.


1984 ◽  
Vol 39 (5) ◽  
pp. 374-377 ◽  
Author(s):  
J. J. S. van Rensen

The reactivation of the Hill reaction in CO2-depleted broken chloroplasts by various concentrations of bicarbonate was measured in the absence and in the presence of photosystem II herbicides. It appears that these herbicides decrease the apparent affinity of the thylakoid membrane for bicarbonate. Different characteristics of bicarbonate binding were observed in chloroplasts of triazine-resistant Amaranthus hybridus compared to the triazine-sensitive biotype. It is concluded that photosystem II herbicides, bicarbonate and formate interact with each other in their binding to the Qв-protein and their interference with photosynthetic electron transport.


1998 ◽  
Vol 53 (9-10) ◽  
pp. 849-856
Author(s):  
Sujata R. Mishra ◽  
Surendra Chandra Sabat

Stimulatory effect of divalent cations like calcium (Ca2+) and magnesium (Mg2+) was investigated on electron transport activity of divalent cation deficient low-salt suspended (LS) thylakoid preparation from a submerged aquatic angiosperm, Hydrilla verticillata. Both the cations stimulated electron transport activity of LS-suspended thylakoids having an intact water oxidation complex. But in hydroxylamine (NH2OH) - or alkaline Tris - washed thylakoid preparations (with the water oxidation enzyme impaired), only Ca2+ dependent stimulation of electron transport activity was found. The apparent Km of Ca2+ dependent stimulation of electron flow from H2O (endogenous) or from artificial electron donor (exogenous) to dichlorophenol indophenol (acceptor) was found to be identical. Calcium supported stimulation of electron transport activity in NH2OH - or Tris - washed thylakoids was electron donor selective, i.e., Ca2+ ion was only effective in electron flow with diphenylcarbazide but not with NH2OH as electron donor to photosystem II. A magnesium effect was observed in thylakoids having an intact water oxidation complex and the ion became unacceptable in NH2OH - or Tris - washed thylakoids. Indirect experimental evidences have been presented to suggest that Mg2+ interacts with the water oxidation complex, while the Ca2+ interaction is localized betw een Yz and reaction center of photosystem II.


1994 ◽  
Vol 72 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Ernesto Bernal-Morales ◽  
Alfonso Romo De Vivar ◽  
Bertha Sanchez ◽  
Martha Aguilar ◽  
Blas Lotina-Hennsen

The inhibition of ATP synthesis, proton uptake, and electron transport (basal, phosphorylating, and uncoupled) from water to methylviologen by ivalin (a naturally occurring sesquiterpene lactone in Zaluzania triloba and Iva microcephala) indicates that it acts as electron transport inhibitor. Since photosystem I and electron transport from DPC to QA were not affected, while the electron flow of uncoupled photosystem II from H2O to DAD and from water to silicomolybdate was inhibited, we concluded that the site of inhibition of ivalin is located at the oxygen evolution level. Key words: oxygen evolution, ivalin, photosynthesis, sesquiterpene lactone.


1996 ◽  
Vol 51 (3-4) ◽  
pp. 179-184 ◽  
Author(s):  
Surendra Chandra Sabat

Abstract The inhibitory effects of copper ion (Cu2+) on the photosynthetic electron transport func­tion was investigated both in NaCl washed (depleted in 17 and 23 kDa polypeptides) and native (unwashed) photosystem II membrane preparations from spinach (Beta vulgaris) chlo-roplasts. Copper in the range of 2.0 to 15 μᴍ strongly inhibited the electron flow from water to 2,6-dichlorobenzoquinone in NaCl washed particles in a concentration dependent manner. Com plete inhibition was noticed at 15 μᴍ Cu2+. Oppositely in native membranes, 15 μᴍ C u2+ inhibited only 10-12% of control activity. It was found that calcium ion (Ca2+) significantly reduced the Cu2+ inhibition of electron transport activity. The Ca2+ supported prevention of Cu2+ toxicity was specific to Ca2+. Further analysis indicated that both Cu2+ and Ca2+ act competitively. Since Ca2+ is known to have stimulating/stabilizing effect at the donor side of photosystem II, it is therefore suggested that Cu2+ in NaCl washed particles exerts its inhibi­tory effect(s) at the oxidizing side of photosystem stimulates/stabilizes the oxygen evolution.


1979 ◽  
Vol 34 (11) ◽  
pp. 1021-1023 ◽  
Author(s):  
J. J. S. van Rensen ◽  
J. H. Hobé

Abstract The herbicide 4,6-dinitro-o-cresol inhibits electron transport to ferricyanide and non-cyclic photophosphorylation for 50% at about 15 μm. At higher concentrations the photosystem I depen­dent Mehler reaction ascorbate/dichlorophenolindophenol to methyl viologen is stimulated, while cyclic photophosphorylation is inhibited. The herbicide thus is an inhibitory uncoupler. Although the chemical structure of 4,6-dinitro-o-cresol is different from that of the diuron-type herbicides, its site and mechanism of action is similar. Both 4,6-dinitro-o-cresol and diuron inhibit electron transport between the primary electron acceptor of Photosystem II and the plastoquinone pool. This causes a closing of the reaction centers of Photosystem II. The interaction with the inhibited molecule however is different for the two herbicides.


1980 ◽  
Vol 35 (3-4) ◽  
pp. 293-297 ◽  
Author(s):  
P. V. Sane ◽  
Udo Johanningmeier

Abstract Low concentrations (10 µM) of tetranitromethane inhibit noncyclic electron transport in spinach chloroplasts. A study of different partial electron transport reactions shows that tetranitromethane primarily interferes with the electron flow from water to PS II. At higher concentrations the oxidation of plastohydroquinone is also inhibited. Because diphenyl carbazide but not Mn2+ ions can donate electrons efficiently to PS II in the presence of tetranitromethane it is suggested that it blocks the donor side of PS II prior to donation of electrons by diphenyl carbazide. The pH dependence of the inhibition by this protein modifying reagent may indicate that a functional-SH group is essential for a protein, which mediates electron transport between the water splitting complex and the reaction center of PS II.


1984 ◽  
Vol 39 (5) ◽  
pp. 351-353 ◽  
Author(s):  
Stuart M. Ridley ◽  
Peter Horton

Diuron (DCMU) induces the photodestruction of pigments, which is the initial herbicidal symptom. As a working hypothesis, it is proposed that this symptom can only be produced when the herbicide dose is sufficiently high to inhibit not only photosystem II electron transport almost completely, but also inhibit (through over oxidation) the natural cyclic electron flow associated with photosystem I as well. Using freshly prepared chloroplasts, studies of DCMU-induced fluorescence changes, and dose responses for inhibition of electron transport, have been compared with a dose response for the photodestruction of pigments in chloroplasts during 24 h illumination. Photodestruction of pigments coincides with the inhibition of cyclic flow.


Sign in / Sign up

Export Citation Format

Share Document