scholarly journals Longer Photoperiods with the Same Daily Light Integral Increase Daily Electron Transport through Photosystem II in Lettuce

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1172 ◽  
Author(s):  
Claudia Elkins ◽  
Marc W. van Iersel

Controlled environment crop production recommendations often use the daily light integral (DLI) to quantify the light requirements of specific crops. Sole-source electric lighting, used in plant factories, and supplemental electric lighting, used in greenhouses, may be required to attain a specific DLI. Electric lighting is wasteful if not provided in a way that promotes efficient photochemistry. The quantum yield of photosystem II (ΦPSII), the fraction of absorbed light used for photochemistry, decreases with increasing photosynthetic photon flux density (PPFD). Thus, we hypothesized that the daily photochemical integral (DPI), the total electron transport through photosystem II (PSII) integrated over 24 h, would increase if the same DLI was provided at a lower PPFD over a longer photoperiod. To test this, ΦPSII and the electron transport rate (ETR) of lettuce (Lactuca sativa ‘Green Towers’) were measured in a growth chamber at DLIs of 15 and 20 mol m−2 d−1 over photoperiods ranging from 7 to 22 h. This resulted in PPFDs of 189 to 794 μmol m−2 s−1. The ΦPSII decreased from 0.67 to 0.28 and ETR increased from 55 to 99 μmol m−2 s−1 as PPFD increased from 189 to 794 μmol m−2 s−1. The DPI increased linearly as the photoperiod increased, but the magnitude of this response depended on DLI. With a 7-h photoperiod, the DPI was ≈2.7 mol m−2 d−1, regardless of DLI. However, with a 22-h photoperiod, the DPI was 4.54 mol m−2 d−1 with a DLI of 15 mol m−2 d−1 and 5.78 mol m−2 d−1 with a DLI of 20 mol m−2 d−1. Our hypothesis that DPI can be increased by providing the same DLI over longer photoperiods was confirmed.

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1659
Author(s):  
Shane Palmer ◽  
Marc W. van Iersel

Light recommendations for horticultural crops often focus on the optimal daily light integral (DLI) without regard to how that light is delivered throughout each day. Because photosynthesis is more efficient at lower photosynthetic photon flux density (PPFD), we hypothesized that longer photoperiods with lower PPFD results in faster growth than shorter photoperiods with higher PPFD and the same DLI. We quantified the effect of different photoperiods, all providing the same DLI, on photosynthesis and growth of two leafy greens. Mizuna (Brassica rapa var. japonica) and lettuce (Lactuca sativa) “Little Gem” were grown from seed in a controlled environment chamber (20 °C and 819 µmol·mol−1 CO2) under six photoperiods (10, 12, 14, 16, 18, and 20 h). LED fixtures provided white light and PPFD was adjusted so each treatment received a DLI of 16 mol·m−2·d−1. Mizuna and lettuce were harvested 30 and 41 days after planting, respectively. Longer photoperiods with lower PPFD increased light interception, chlorophyll content index, quantum yield of photosystem II, and aboveground biomass, but decreased instantaneous CO2 assimilation of lettuce and mizuna. Aboveground biomass increased 16.0% in lettuce and 18.7% in mizuna in response to increasing the photoperiod from 10 to 20 h. In summary, extending the photoperiod and lowering PPFD increases growth of lettuce and mizuna by increasing light interception and the quantum yield of photosystem II.


2020 ◽  
Vol 145 (2) ◽  
pp. 75-87 ◽  
Author(s):  
Qingwu Meng ◽  
Jennifer Boldt ◽  
Erik S. Runkle

Adding green [G (500–600 nm)] radiation to blue [B (400–500 nm)] and red [R (600–700 nm)] radiation creates white radiation and improves crop inspection at indoor farms. Although G radiation can drive photosynthesis and elicit the shade-avoidance response, its effects on plant growth and morphology have been inconsistent. We postulated G radiation would counter the suppression of crop growth and promotion of secondary metabolism by B radiation depending on the B photon flux density (PFD). Lettuce (Lactuca sativa ‘Rouxai’) was grown in a growth room under nine sole-source light-emitting diode (LED) treatments with a 20-hour photoperiod or in a greenhouse. At the same photosynthetic photon flux density [PPFD (400–700 nm)] of 180 μmol·m−2·s−1, plants were grown under warm-white LEDs or increasing B PFDs at 0, 20, 60, and 100 μmol·m−2·s−1 with or without substituting the remaining R radiation with 60 μmol·m−2·s−1 of G radiation. Biomass and leaf expansion were negatively correlated with the B PFD with or without G radiation. For example, increasing the B PFD decreased fresh and dry mass by up to 63% and 54%, respectively. The inclusion of G radiation did not affect shoot dry mass at 0 or 20 μmol·m−2·s−1 of B radiation, but it decreased it at 60 or 100 μmol·m−2·s−1 of B radiation. Results suggest that the shade-avoidance response is strongly elicited by low B radiation and repressed by high B radiation, rendering G radiation ineffective at controlling morphology. Moreover, substituting R radiation with G radiation likely reduced the quantum yield. Otherwise, G radiation barely influenced morphology, foliage coloration, essential nutrients, or sensory attributes regardless of the B PFD. Increasing the B PFD increased red foliage coloration and the concentrations of several macronutrients (e.g., nitrogen and magnesium) and micronutrients (e.g., zinc and copper). Consumers preferred plants grown under sole-source lighting over those grown in the greenhouse, which were more bitter and less acceptable, flavorful, and sweet. We concluded that lettuce phenotypes are primarily controlled by B radiation and that G radiation maintains or suppresses lettuce growth depending on the B PFD.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 548B-548
Author(s):  
Lailiang Cheng ◽  
Leslie H. Fuchigami ◽  
Patrick J. Breen

Photosystem II (PSII) efficiency and CO2 assimilation in response to photon flux density (PFD) and intercellular CO2 concentration (Ci) were monitored simultaneously in leaves of apple, pear, apricot, and cherry with a combined system for measuring chlorophyll fluorescence and gas exchange. When photorespiration was minimized by low O2 (2%) and saturated CO2 (1300 ppm), a linear relationship was found between PSII efficiency and the quantum yield for CO2 assimilation with altering PFD, indicating CO2 assimilation in this case is closely linked to PSII activity. As PFD increased from 80 to 1900 μmol·m–2·s–1 under ambient CO2 (350 ppm) and O2 (21%) conditions, PSII efficiency decreased by increased nonphotochemical quenching and decreased concentration of open PSII reaction centers. The rate of linear electron transport showed a similar response to PFD as CO2 assimilation. As Ci increased from 50 to 1000 ppm under saturating PFD (1000 μmol·m–2·s–1) and ambient O2, PSII efficiency was increased initially by decreased nonphotochemical quenching and increased concentration of open PSII reaction centers and then leveled off with further a rise in Ci. CO2 assimilation reached a plateau at a higher Ci than PSII efficiency because increasing Ci diverted electron flow from O2 reduction to CO2 assimilation by depressing photorespiration. It is concluded that PSII efficiency is regulated by both nonphotochemical quenching and concentration of open PSII reaction centers in response to light and CO2 to meet the requirement for photosynthetic electron transport.


1995 ◽  
Vol 22 (5) ◽  
pp. 833 ◽  
Author(s):  
Hehui Zhang ◽  
MR Sharifi ◽  
PS Nobel

Limitations to photosynthesis were examined for Encelia farinosa Toney et A.Gray, a common C3 sub-shrub in arid regions of south-westem United States, for plants grown in full sunlight and those shaded to 40% of full sunlight. The initial slopes of CO2 assimilation (A) versus intercellular CO2 concentration curves were similar for sun and shade plants at low photosynthetic photon flux density (PPFD) but higher for sun plants as the PPFD increased, indicating a greater limitation by carboxylation capacity in shade plants. Sun plants had higher electron transport rates but a lower ratio of electron transport capacity to carboxylation capacity (Vmax); the ratio was inversely proportional to mesophyll conductance for both sun and shade plants. Dark respiration decreased with decreasing leaf water potential (Ψ1) in sun plants but remained unchanged in shade plants; day respiration was little affected by PPFD for both sun and shade plants. Stomatal conductance (gs) was similar for sun and shade plants under high soil-moisture conditions but higher in sun plants as Ψ1 decreased; for all data considered together, changes in the leaf-air vapour pressure difference accounted for 71% of the variation in gs. The lower A for shade plants of E. farinosa apparently resulted from a lower Vmax, as well as a lower gs when plants were under water stress.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 344
Author(s):  
Md Momtazur Rahman ◽  
Mikhail Vasiliev ◽  
Kamal Alameh

Manipulation of the LED illumination spectrum can enhance plant growth rate and development in grow tents. We report on the identification of the illumination spectrum required to significantly enhance the growth rate of sweet basil (Ocimum basilicum L.) plants in grow tent environments by controlling the LED wavebands illuminating the plants. Since the optimal illumination spectrum depends on the plant type, this work focuses on identifying the illumination spectrum that achieves significant basil biomass improvement compared to improvements reported in prior studies. To be able to optimize the illumination spectrum, several steps must be achieved, namely, understanding plant biology, conducting several trial-and-error experiments, iteratively refining experimental conditions, and undertaking accurate statistical analyses. In this study, basil plants are grown in three grow tents with three LED illumination treatments, namely, only white LED illumination (denoted W*), the combination of red (R) and blue (B) LED illumination (denoted BR*) (relative red (R) and blue (B) intensities are 84% and 16%, respectively) and a combination of red (R), blue (B) and far-red (F) LED illumination (denoted BRF*) (relative red (R), blue (B) and far-red (F) intensities are 79%, 11%, and 10%, respectively). The photosynthetic photon flux density (PPFD) was set at 155 µmol m−2 s−1 for all illumination treatments, and the photoperiod was 20 h per day. Experimental results show that a combination of blue (B), red (R), and far-red (F) LED illumination leads to a one-fold increase in the yield of a sweet basil plant in comparison with only white LED illumination (W*). On the other hand, the use of blue (B) and red (R) LED illumination results in a half-fold increase in plant yield. Understanding the effects of LED illumination spectrum on the growth of plant sweet basil plants through basic horticulture research enables farmers to significantly improve their production yield, thus food security and profitability.


Sign in / Sign up

Export Citation Format

Share Document