scholarly journals Light, Temperature, and Sucrose Affect Color, Diameter, and Soluble Solids of Disks of Wax Apple Fruit Skin

HortScience ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 279-281 ◽  
Author(s):  
Zen-hong Shü ◽  
Cheng-chung Chu ◽  
Lee-juan Hwang ◽  
Ching-shung Shieh

A study was conducted to assess the combined effects of light, temperature and sucrose on color, weight, diameter, and soluble solids of the skin of wax apple (Syzygium samarangense Merr. & Perry) fruits. Skin disks were cultured in a factorial arrangement of two light levels [dark or light (300 μmol·m-2·s-1)] as subplots and three sucrose concentrations (0%, 3%, or 6%) as sub-subplots within three temperature levels (20, 25, or 30 °C) as whole plot treatments. Weight, diameter, soluble solids concentration (SSC), and anthocyanin content were measured 2 weeks after incubation. Light increased SSC and anthocyanin, but reduced the increase in weight and diameter. Increasing the temperature limited increase in diameter and anthocyanin content. Weight, SSC, and anthocyanin contents increased in a linear fashion with concentration of sucrose in the culture solution. However, none of the three factors played a unique role in anthocyanin synthesis in wax apple. Among the 18 combinations, light/20°C/6% sucrose gave the highest SSC and anthocyanin content, while dark/20°C/6% sucrose produced the largest diameter.

1992 ◽  
Vol 117 (4) ◽  
pp. 551-557 ◽  
Author(s):  
Richard J. Campbell ◽  
Richard P. Marini

Photosynthetic photon flux density (PPFD), measured at various canopy positions throughout the growing season in 1989 and 1990, was used to explain variation in fruit characteristics of `Delicious' apples (Malus domestica Borkh.) harvested from these positions at 135, 145, 155, and 165 days after full bloom (DAFB). Hours above an average PPFD threshold of 250 μmol·m-2·s-1 (HR250) explained an average of only 2% more variation in fruit characteristics than other PPFD threshold levels or total cumulative photosynthetic photon density (PPD) in each year. Percent of red surface had a positive linear relationship with HR250 on all harvest dates in both years; intercepts increased on each successive harvest. The slopes and R2 were highest at 135 DAFB and decreased on each successive harvest. Intensity of red pigmentation and soluble solids concentration also increased linearly with HR250, with equivalent slopes and increasing intercepts on each successive harvest. Fruit weight, flesh firmness, length: diameter ratio, and starch index were not consistently affected by any measure of canopy light levels. Except for intensity of redness, relationships developed between fruit characteristics and cumulative late-season PPD during the final 10 weeks before harvest (CPPDLS) had trends similar to the models for HR250 for all harvests in both years. Models developed with instantaneous light measurements were similar to those developed with the more detailed cumulative light measurements.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 737f-737
Author(s):  
P. Perkins-Veazie ◽  
J.K. Collins ◽  
J.R. Clark

The storage life of blackberry fruit is generally `2 to 3 days when stored at 1C. This study was done to determine the maximum storage life among erect blackberry cultivars, and to determine storage temperature effects on storage life. Shiny black fruit from `Navaho', `Arapaho', and `Shawnee' cultivars were stored at 2C, 5C, or 10C for 20, 14, and 7 days, respectively. At any temperature. only 10-20% of `Navaho' fruit had decay, while 30-50% of `Arapaho' and 40-70% of `Shawnee' fruit had decay. Weight loss was 3-5% depending on temperature and was not different among cultivars. Soluble solids concentration did not change during storage but titratable acidity decreased in all cultivars for fruit held at all temperatures. Anthocyanin content increased during storage in `Shawnee' and `Navaho' but not in `Arapaho' fruit. Results indicate that `Navaho' fruit have a longer shelflife than other blackberry cultivars.


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1637-1640 ◽  
Author(s):  
Valeria Sigal Escalada ◽  
Douglas D. Archbold

The impact of heat plus aminoethoxyvinylglycine (AVG) treatments alone or in combination on ripening of four apple cultivars has been studied. A solution of AVG was applied to ‘Lodi’, ‘Senshu’, ‘Redchief Delicious’, and ‘Red Fuji’ apple trees ≈4 weeks before normal harvest at 124 g·ha−1 a.i. After harvest, half of each group of control and AVG-treated fruit was heated at 38 °C for 4 days and then stored at 4 °C for 30 days. After cold storage, AVG and heat individually suppressed ethylene production of ‘Senshu’ and ‘Redchief Delicious’ but not of ‘Lodi’ or ‘Red Fuji’. The combination of AVG with heat treatment reduced ethylene production the most consistently in each cultivar except ‘Lodi’, suggesting some additive effect of the treatments. The respiration rate after cold storage was not consistently affected by any treatment. AVG alone and with heat maintained firmness of ‘Lodi’, AVG plus heat maintained it in ‘Senshu’, but neither ‘Redchief Delicious’ nor ‘Red Fuji’ firmness responded to the treatments. AVG-treated ‘Lodi’ and ’Redchief Delicious’ fruit, heated fruit of all cultivars, and AVG plus heat in all had lower titratable acidity than controls after cold storage. Although there were no effects of any treatment on fruit soluble solids concentration, the combined treatment increased the soluble solids:titratable acidity ratio of all cultivars, although heat or AVG alone had no consistent effects. Total ester production by ‘Redchief Delicious’ peel tissue after cold storage was reduced 44% by AVG and 70% or more by heat and AVG plus heat. There were no differences in peel alcohol acyltransferase activity among the treatments, supporting the hypothesis that substrate availability was the limiting factor for ester synthesis in treated fruit. Overall, heat plus AVG treatment did not provide any advantage over each alone for maintaining apple fruit quality during short-term cold storage.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 694f-695
Author(s):  
Ross E. Byers

AVG applied 2 to 6 weeks before the optimum harvest date for several cultivars dramatically reduced pre-harvest fruit drop. The loss of fruit firmness and starch loss after the optimum harvest date was reduced by AVG sprays. The development of watercore in `Starkrimson Delicious' and `York' and maturity cracking in `Rome' and `Golden Delicious' were delayed and/or prevented by AVG. Color development was slightly delayed for most red cultivars and `Golden Delicious'. Soluble solids concentration was generally unchanged. Airblast applications of 123 g·ha–1 AVG was no more effective than a standard rate of NAA (28 to 56 g·ha–1), but rates of 248 g·ha–1 AVG and above were more effective than NAA for most cultivars. When fruit were left on the tree for periods of 3 to 5 weeks after the optimum harvest date, NAA hastened the loss of fruit firmness and starch and NAA increased watercore of `Delicious' and maturity cracking of `Golden Delicious' and `Law Rome'. Soluble solids and red color were generally unaffected by NAA. Ethephon sprays hastened the rate of fruit drop. When NAA was tank mixed with ethephon, NAA delayed fruit drop caused by ethephon, but AVG did not. The use of superior oil or Regulaid surfactant did not affect NAA or AVG responses; however, the silicone surfactant Silwet L-77, in one experiment, promoted the effectiveness of AVG. Tank mixing NAA or AVG with pesticides (Guthion + Lannate + Captan) did not affect the responses of AVG or NAA on fruit drop.


1999 ◽  
Vol 124 (5) ◽  
pp. 468-477 ◽  
Author(s):  
I.J. Warrington ◽  
T.A. Fulton ◽  
E.A. Halligan ◽  
H.N. de Silva

Container-grown `Delicious', `Golden Delicious', `Braeburn', `Fuji' and `Royal Gala' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] trees, on Malling 9 (M.9) rootstock, were subjected to a range of different maximum/minimum air temperature regimes for up to 80 days after full bloom (DAFB) in controlled environments to investigate the effects of temperature on fruit expansion, final fruit weight, and fruit maturation. Fruit expansion rates were highly responsive to temperature with those at a mean of 20 °C being ≈10 times greater than those at a mean of 6 °C. All cultivars exhibited the same general response although `Braeburn' consistently showed higher expansion rates at all temperatures compared with lowest rates for `Golden Delicious' and intermediate rates for both `Delicious' and `Fuji'. The duration of cell division, assessed indirectly by measuring expansion rate, appeared to be inversely related to mean temperature (i.e., prolonged under cooler conditions). Subsequently, fruit on trees from the coolest controlled temperature treatment showed greater expansion rates when transferred to the field and smaller differences in fruit size at harvest than would have been expected from the measured expansion rates under the cool treatment. Nonetheless, mean fruit weight from warm postbloom treatments was up to four times greater at harvest maturity than that from cool temperature treatments. Postbloom temperature also markedly affected fruit maturation. Fruit from warm postbloom temperature conditions had a higher soluble solids concentration, more yellow background color, lower flesh firmness, and greater starch hydrolysis than fruit from cooler temperatures.


2000 ◽  
Vol 125 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Rongcai Yuan ◽  
Duane W. Greene

Experiments were conducted to evaluate the effects of BA, removal of bourse shoot tips including only folded leaves and growing point, and different numbers of leaves per fruit on fruit retention and fruit development in `More-Spur McIntosh'/Malling 7 (M.7) apple trees [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.]. Removal of the bourse shoot tip increased fruit retention, whereas BA thinned fruit regardless of whether shoot tips were removed or not. There was no interaction between BA application and shoot tipping. BA thinned fruit only when one leaf per fruit was on a girdled small fruiting branch, but not when leaf number per fruit was two or greater. Fruit weight and soluble solids concentration increased dramatically with increasing leaf number per fruit. BA reduced fruit growth rate when <16 leaves per fruit were present on the girdled branches between 3 and 7 days after treatment, but it did not affect fruit growth rate when 32 leaves per fruit were on the girdled branches. Increasing leaf number also increased viable seed number per fruit while decreasing the number of aborted seeds, but it had no effect on the number of total seeds per fruit. BA reduced the number of viable seeds per fruit only when the number of leaves per fruit was less than four. Results suggest that BA thins apple fruit mainly by reducing carbohydrates available to developing fruitlets. Chemical name used: N-(phenylmethyl)-1H-purine-6-amine [benzyladenine (BA)].


2016 ◽  
Vol 39 (2) ◽  
pp. 187-192
Author(s):  
Jorge A. Zegbe ◽  
M. Hossein Behboudian ◽  
Alexander Lang

Partial rootzone drying (PRD) is a feasible irrigation strategy for saving water, which might save up to 50 % water, while maintaining apple (Malus domestica Borkh) yield. More information is available on the effect of PRD on yield and fruit quality than on fruit maturity advancement (FMA). Therefore, the effect of PRD on FMA of Royal Gala apples grown in a dry area of New Zealand was studied. The irrigation treatments were commercial irrigation (CI) and PRD. Fruit growth and FMA were measured. FMA was estimated based on mean fresh mass of fruit (MFMF), fruit skin color (FSC), fruit diameter (FD), fruit volume (FV), fruit density (FDen), flesh firmness (FF), total soluble solids concentration (TSSC), dry mass concentration of fruit (DMCF), and starch pattern index (SPI). MFMF, FSC, FD, FV, FDen, and DMCF were similar between CI and PRD fruit. However, compared to CI fruit, PRD fruit showed a tendency for enhancing FF and TSSC. SPI was higher in PRD fruit than in CI fruit. Canonical discriminant analysis showed that fruit quality attributes collectively accounted for the significant separation between CI and PRD fruit. The separation was weighed toward higher SPI, which was indicative of FMA in PRD treatment. This has important implications for early marketing. So, PRD application may improve FMA and save irrigation water by 52 %. The PRD could therefore be recommended for similar agro-ecological areas of the world.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 978B-978
Author(s):  
Jennifer De Ell ◽  
Dennis Murr

A sprayable formulation of 250 μL·L-1 1-MCP and 1% oil adjuvant was applied to mature `McIntosh', `Empire', and `Delicious' apple trees 1 week prior to anticipated optimum harvest. Other spray treatments included: none, 1% oil adjuvant alone, and a formulation of 125 μL·L-1 1-MCP and adjuvant (`Empire' only). Unsprayed fruit were treated postharvest with or without gaseous 1-MCP (1 μL·L-1). At harvest, internal ethylene concentration (IEC), starch index, firmness, and soluble solids concentration were measured, as well as CO2, ethylene, and total volatile production of fruit samples over a 14-day period at 22 °C. Additional fruit samples for all preharvest and postharvest 1-MCP treatments were held 14 days at 22 °C and IEC and firmness measured for treatment efficacy. Fruit quality was assessed at 3 and 6 month storage intervals and over a 2-week ripening period at 22 °C. For all cultivars, the production rates of CO2, ethylene, and volatiles, as well as increases of IEC and decreases in firmness were inhibited or delayed by sprayable 1-MCP treatment. These effects were comparable to the postharvest 1-MCP treatment and were maintained during storage. The results of these experiments suggest that sprayable 1-MCP could be an additionaal tool for maintaining apple fruit quality. However, the sprayable formulation used in this study caused 100% incidence of skin damage to `McIntosh' and a slight amount to `Empire' (<5%). Lesions were halo-like, centered around lenticels, and tended to be more severe near the calyx. No skin damage was observed in `Delicious' or in fruit treated with the adjuvant only or postharvest 1-MCP.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 978A-978 ◽  
Author(s):  
Chris B. Watkins ◽  
Jacqueline F. Nock ◽  
Tarek Wardeh

A sprayable formulation of 1-MCP (250 μL·L-1) and 1% oil adjuvant was applied to `McIntosh' and `Empire' apple trees 24, 14, and 7 days prior to anticipated optimum harvest dates (early, mid-, and late-spray timings, respectively), and fruit harvested sequentially over 2 to 3 weeks from this date. At harvest, internal ethylene concentrations (IEC), percentage of blush, starch indices, firmness, and soluble solids concentration (SSC) were measured, as well as ethylene production of fruit maintained for 7 days at 20 °C. Additional fruit were stored in air (0.5 °C) with or without postharvest 1-MCP treatment. Preharvest drop of `McIntosh' apples was also measured. Quality of these fruit was assessed at intervals for up to 4.5 months (`McIntosh') or 6 months (`Empire'). All spray timing resulted in marked delays of preharvest drop. For both cultivars, increases of IEC were inhibited or delayed by sprayable 1-MCP treatment, but effects on other maturity and quality factors were small. Ethylene production of treated fruit was lower than that of untreated fruit. The effects of sprayable 1-MCP on IEC and firmness were maintained during storage, but the longetivity of these effects was affected by cultivar, spray timing, and storage period. Postharvest application of 1-MCP further inhibited IEC and maintained firmness of the fruit during storage. These experiments show that sprayable 1-MCP may be a valuable tool to manipulate both pre- and postharvest responses of apple fruit. However, with the formulation used in these experiments, phytotoxicity, primarily as damage around lenticel areas, was observed at harvest indicating that further development of the formulation is necessary for industry use.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 845D-845
Author(s):  
John A. Cline ◽  
Tony D. Webster

For many years, researchers and growers have attempted to find methods to alleviate the rain-induced cracking of sweet cherries. Cracking is thought to be caused primarily by the osmotic uptake of rain water through the fruit skin. A 3-year study was conducted at East Malling to test the hypotheses that rain covers reduce, while irrigation increases, fruit cracking. Two types of rain shelters, with and without trickle irrigation, were compared against control treatments on 8-year-old `Merchant'/Colt trees. Covers reduced cracked fruit by up to 11% in 1991, 7% in 1992, and 25% in 1993 when natural cracking on uncovered trees was ≈20%, 25%, and 40%, respectively. Trickle irrigation was associated with a 6% increase in fruit cracking in all 3 years. Tree covers and irrigation also tended to increase fruit size and maturity. Fruits from beneath covers were lower in soluble solids concentration and were firmer in comparison with fruits from uncovered trees. This study indicates that tree covers, while affording some protection against rain-induced cracking, do not altogether prevent the problem. Furthermore, irrigation appears to aggravate cracking when used with tree covers. A mechanism for cracking under covers will be discussed in relation to rainfall, fruit transpiration, and tree water relations.


Sign in / Sign up

Export Citation Format

Share Document