scholarly journals Postharvest Quality of 'Bing' Cherries Following Preharvest Treatment with Hydrogen Cyanamide, Calcium Ammonium Nitrate, or Gibberellic Acid

HortScience ◽  
2003 ◽  
Vol 38 (3) ◽  
pp. 407-411 ◽  
Author(s):  
Murray Clayton ◽  
William V. Biasi ◽  
I. Tayfun Agar ◽  
Stephen M. Southwick ◽  
Elizabeth J. Mitcham

During three consecutive years, 'Bing' sweet cherry (Prunus avium L.) trees were treated during dormancy with the dormancy-manipulating compounds, CH2N2 or CaNH4NO3, or were treated with the plant growth regulator GA3 at straw color development. Fruit of a range of maturities, based on skin color, were evaluated for quality following harvest and simulated transit and market storage conditions. At comparable maturities, CH2N2 and GA3 fruit were of similar firmness and were consistently firmer than CaNH4NO3-treated and untreated fruit across years, storage regimes, and maturities. CaNH4NO3 and untreated fruit were of similar firmness. CH2N2-treated cherries were larger than fruit of other treatments, but only marginally with respect to variation in fruit size between years. Contraction of fruit diameter occurred after 3 days storage, but ceased thereafter up to 11 days storage. Soluble solids and titratable acidity varied between years, storage regimes, and maturities. Strong interactions of treatment and year concealed possible treatment effects on these indices. GA3 fruit contained fewer surface pits in one year while CH2N2 fruit suffered less shrivel in another. The earlier harvest date for CH2N2 fruit often avoided higher field temperatures and the resulting promotion of postharvest shrivel. Pitting and shrivel were more prevalent in stored fruit. Brown stem discoloration developed in storage, occurring most frequently in mature fruit, although methyl bromide-fumigated fruit were particularly susceptible. This disorder was more common in GA3 fruit during years of high incidence. Chemical names used: gibberellic acid (GA3); calcium ammonium nitrate (CaNH4NO3); hydrogen cyanamide (CH2N2).

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 745-748 ◽  
Author(s):  
Murray Clayton ◽  
William V. Biasi ◽  
I. Tayfun Agar ◽  
Stephen M. Southwick ◽  
Elizabeth J. Mitcham

`Bing' sweet cherry (Prunus avium L.) trees were treated with hydrogen cyanamide (CH2N2) or calcium ammonium nitrate (CaNH4NO3) during dormancy, or gibberellic acid (GA3) 26 days before harvest during three consecutive years. Fruit were evaluated at harvest for sensory taste quality using twenty trained panelists sampling for firmness, sweetness, tartness, and cherry flavor. Nondestructive instrumental firmness preceded destructive sensory firmness on the same untreated and GA3-treated cherries in one year when used as a supplementary evaluation. Sensory firmness was consistently higher in GA3 fruit and to a lesser extent in CH2N2 fruit than in CaNH4NO3 and untreated fruit. Instrumental firmness of GA3 fruit did not increase significantly compared with untreated fruit yet instrumental firmness of each treatment correlated relatively well with perceived sensory firmness. Sensory sweetness and cherry flavor scored very similarly, yet both attributes simultaneously varied between treatments across the years. Perceived sensory tartness of treated fruit was variable among years; yet, on average, was rated among treated and untreated fruit as similar. Under the assumption that elevated sensory firmness, sweetness, and cherry flavor intensity reflects improved sweet cherry quality, GA3 fruit were rated of higher quality than untreated fruit given their increased firmness and similar or occasionally elevated sweetness and cherry flavor intensity. CH2N2 fruit maintained quality similar to that of untreated fruit, despite often having marginally higher firmness, due to similar or reduced ratings for sweetness and cherry flavor intensity. Notwithstanding similar firmness between CaNH4NO3 and untreated cherries, sensory quality of CaNH4NO3-treated cherries was reduced due to their often-diminished levels of perceived sweetness and cherry flavor.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 525B-525 ◽  
Author(s):  
K.G. Weis ◽  
S.M. Southwick ◽  
J.T. Yeager ◽  
M.E. Rupert ◽  
R.E. Moran ◽  
...  

In continuing trials (1995-current), we have used a variety of treatments to overcome inadequate chilling, coordinate bloom, improve leaf out and cropping, and advance/coordinate maturity in sweet cherry, cv. Bing. Treatments have included hydrogen cyanamide (HCN, Dormex) and various surfactants or dormant oils combined with calcium ammonium nitrate (CAN17). Chill hour accumulation, (required chilling for `Bing' = 850 to 880 chill hours) has varied greatly in each dormant season from 392 (Hollister, 1995-1996) to adequate, depending both on the season and location (central valley vs. coastal valley). In 1998, 4% HCN advanced budbreak significantly compared to any other treatment, although other chemical treatments also were more advanced than the untreated control. Dormex advanced completion of bloom 11% to 40% more than other treatments, although other dormancy-replacing chemicals were at least 16% more advanced in petal fall than the untreated control. Dormex contributed to slightly elevated truss bud death, as did 2% Armobreak + 25% CAN17. In 1998, fruit set was improved by 2% Armobreak + 25% CAN17 (79%) compared to the untreated control (50%); all other treatments statistically equaled the control. Fruit set was not improved by Dormex, although bloom was advanced by a few days in this treatment. As fruit set was increased by treatments, rowsize decreased (as did fruit weight), as expected, but no treatment resulted in unacceptable size. In 1997, fruit set was also improved by 2% Armobreak + 25% CAN17; however, fruit set was so low overall in that year that no real impact was found. In 1997 and 1998, 4% HCN advanced fruit maturity compared to other treatments, with darker, softer, larger fruit at commercial harvest. These and additional results will be presented.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 514c-514
Author(s):  
K.G. Weis ◽  
S.M. Southwick ◽  
J.T. Yeager ◽  
M.E. Rupert ◽  
W.W. Coates

Continuing trials (1995–present) advanced budbreak and flowering with a surfactant and calcium ammonium nitrate (CAN17), and in 1997, hydrogen cyanamide (HCN). Chilling in 1996–1997 was marginal in San Joaquin County (SJ, 830 chill hours, 18 Feb.), and low in San Benito County (SB, 612 chill hours, 21 Feb.). When we used the “45 °F” chilling model, the most effective surfactant + nitrate treatment timings for both locations were similar by chill accumulation (≈72 % to 82% of required chilling for `Bing' = 850–880 chill hours), although the two locations differed in total chill accumulation and date of effective treatment. Full bloom (FB) was advanced by 1 week with 4% HCN in SJ, followed by 2% surfactant + 25% calcium ammonium nitrate applied on 21 Jan. (700 chill hours), compared to the untreated control. Bloom duration (full bloom to petal fall) was compressed most by surfactant and CAN17. Bloom in SB was also most advanced by HCN, followed by 2% surfactant + 25% CAN17 applied on 21 Feb. (612 chill hours). Fruit set was improved in SB by surfactant and CAN17 in mid-February; set was too low, however, for real impact. In SJ and SB, HCN advanced fruit maturity most, followed by surfactant and CAN17 applied 21 Jan.; these fruits were softer. We believe that, in order for treatments to be effective in advancing budbreak and full bloom, some minimum amount of chilling must be accumulated prior to application (perhaps 60% to 75% of chilling requirement). We have also determined that where chilling is well below minimum requirement, higher rates of CAN (25%) are necessary to advance bloom. A further advantage of using Armobreak + CAN is improved N level in buds and bark after treatment (1997).


HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Gerry H. Neilsen ◽  
Denise Neilsen ◽  
Frank Kappel ◽  
T. Forge

‘Cristalina’ and ‘Skeena’ sweet cherry cultivars (Prunus avium L.) on Gisela 6 (Prunus cerasus × Prunus canescens) rootstock planted in 2005 were maintained since 2006 in a randomly blocked split-split plot experimental design with six blocks of two irrigation frequency main plot treatments within which two cultivar subplots and three soil management sub-subplots were randomly applied. The focus of this study was the growth, yield, and fruit quality response of sweet cherry to water and soil management over three successive fruiting seasons, 2009–11, in a cold climate production area. The final 2 years of the study period were characterized by cool, wet springs resulting in low yield and yield efficiency across all treatments. Soil moisture content (0- to 20-cm depth) during the growing season was often higher in soils that received high-frequency irrigation (HFI) compared with low-frequency irrigation (LFI). HFI and LFI received the same amount of water, but water was applied four times daily in the HFI treatment but every other day in the LFI treatment. Consequently, larger trunk cross-sectional area (TCSA) and higher yield were found on HFI compared with LFI trees. Soil management strategies involving annual bloom time phosphorus (P) fertigation and wood waste mulching did not affect tree vigor and yield. Increased soluble solids concentration (SSC) occurred with LFI. Decreased SSC occurred with delayed harvest maturity in trees receiving P fertigation at bloom. The largest fruit size was correlated for both cultivars with low crop loads ranging from 100 to 200 g fruit/cm2 TCSA. Overall cool, wet spring weather strongly affected annual yield and fruit quality, often overriding cultivar and soil and water management effects.


2018 ◽  
Vol 40 (3) ◽  
Author(s):  
Giselda Alves ◽  
Jhulia Gelain ◽  
Gloria Soriano Vidal ◽  
Cristiano Nunes Nesi ◽  
Louise Larissa May De Mio ◽  
...  

Abstract This study aimed to evaluate the flowering period and the physicochemical characteristics of peaches, aiming to find those most promising for the diversification of the peach crop in the Metropolitan Region of Curitiba, Paraná State. We evaluated 8 selections and three cultivars in Porto Amazonas and 10 cultivars in Araucaria for flowering period, fruit set, diameter and height of fruit, average fruit weight, the skin color, soluble solids (SS), titratable acidity (TA), ratio SS/ TA, hydrogen potential (pH). The flowering period occurred between late June and late September ranging from 16 to 25 days. The fruit set rate was greater than 50% for ‘Cascata 1513’, ‘Cascata 1429’, ‘Cascata 1577’, ‘Cascata 1743’ and for all cultivars in Araucaria. There were significant differences for the other variables assessed. It was concluded that in Araucária, ‘Charme’ and ‘Chimarrita’ are good planting options, have the same duration of the cycle (111 days), being ‘Charme’ a little later. Besides these, ‘Douradão’ and ‘Rubimel’ have good fruit size, moderate acidity and best SS/TA ratio, being earlier than the previous ones. ‘PS 25399’ is the earliest and showed reddish epidermis and great consumer interest. In Porto Amazonas, selections and cultivars tested produced little fruit of small size, being required more studies to be recommended in these area.


HortScience ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 236-244 ◽  
Author(s):  
Sara Serra ◽  
Rachel Leisso ◽  
Luca Giordani ◽  
Lee Kalcsits ◽  
Stefano Musacchi

The apple variety, ‘Honeycrisp’ has been extensively planted in North America during the last two decades. However, it suffers from several agronomic problems that limit productivity and postharvest quality. To reduce losses, new information is needed to better describe the impact of crop load on productivity and postharvest fruit quality in a desert environment and the major region where ‘Honeycrisp’ expansion is occurring. Here, 7-year-old ‘Honeycrisp’ trees on the M9-Nic29 rootstock (2.5 × 0.9 m) were hand thinned to five different crop loads [from 4.7 to 16.0 fruit/cm2 of trunk cross-sectional area (TCSA)] to compare fruit quality, maturity, fruit size, elemental concentration, and return bloom. Fruit size distribution was affected by crop load. Trees with the highest crop load (16 fruit/cm2) produced smaller fruit. Index of absorbance difference (IAD) measurements (absorption difference between 670 and 720 nm), a proxy indicator of the chlorophyll content below the skin of fruit measured by a DA-meter, were made shortly after harvest (T0) and after 6 months of storage (T1). Fruit from the trees with the lowest crop load had lower IAD values indicating advanced fruit ripeness. The comparison between the IAD classes at T0 and T1 showed that fruit belonging to the lowest IAD class had significantly higher red-blushed overcolor percentage, firmness, dry matter, and soluble solid content than those in the “most unripe” class (highest IAD readings) regardless of crop load. The percentage of blushed color, firmness, titratable acidity (TA), soluble solids content, and dry matter were all higher in the lowest crop loads at both T0 and T1. Fruit calcium (Ca) concentration was lowest at the lowest crop load. The (K + Mg + N):Ca ratio decreased as crop load increased until a crop load of 11.3 fruit/cm2, which was not significantly different from higher crop loads. For return bloom, the highest number of flower clusters per tree was reported for 4.7 fruit/cm2 crop load, and generally it decreased as crop load increased. Here, we highlight the corresponding changes in fruit quality, storability, and elemental balance with tree crop load. To maintain high fruit quality and consistency in yield, careful crop load management is required to minimize bienniality and improve fruit quality and storability.


2001 ◽  
Vol 11 (2) ◽  
pp. 234-242 ◽  
Author(s):  
Desmond R. Layne ◽  
Zhengwang Jiang ◽  
James W. Rushing

Replicated trials were conducted during the summers of 1998 and 1999 at commercial orchards in South Carolina to determine the influence of ground application of a metalized, high density polyethylene reflective film on fruit red skin color and maturity of peach (Prunus persica) cultivars that historically have poor red coloration. At each site there were two experimental treatments: 1) control and 2) reflective film (film). Film was applied 2 to 4 weeks before anticipated first harvest date by laying a 150-cm (5-ft) wide strip of plastic on either side of the tree row in the middles. Treatment areas at a given farm ranged from 0.25 to 0.5 ha (0.5 to 1.0 acre) in size and each treatment was replicated four times at each site. At harvest, two 50-fruit samples were picked from each plot per treatment. All fruit were sized and visually sorted for color (1 = 0% to 25%, 2 = 26% to 50%, 3 = 51% to 75%, and 4 = 76% to 100% red surface, respectively). A 10-fruit subsample was selected following color sorting and evaluated for firmness and soluble solids concentration (SSC). All cultivars tested (`CVN1', `Loring', `Bounty', `Summer Gold', `Sunprince', `Cresthaven' and `Encore') experienced significant increases in percent red surface when film was used in 1998 and 1999. This color improvement ranged from 16% to 44% (mean = 28%). On average, fruit from film were 4.2 N (0.9 lb force) softer and had 0.3% higher SSC than control fruit. Growers harvested more fruit earlier and in fewer harvests for film. Fruit size was not affected by film. Reflected solar radiation from film was not different in quality than incident sunlight. Film resulted in an increase in canopy air temperature and a reduction in canopy relative humidity during daylight hours.


1999 ◽  
Vol 9 (1) ◽  
pp. 51-53 ◽  
Author(s):  
Craig Kallsen

Previous research has shown that nitrogen fertilization rates may influence fruit quality characteristics of navel oranges [(Citrus sinensis) (L.) Osbeck]. The objective of this study was to determine, for equal seasonal N applications, if the timing of the last seasonal nitrogen fertigation promotes early fruit maturity or affects fruit size. The study consisted of four treatments with the total seasonal allocation of nitrogen fertilizer applied by ≈1 May, 1 June, 1 July, and 1 Aug. in an experimental site in a commercial orange grove in the southern San Joaquin Valley of California. The source of nitrogen was a liquid calcium ammonium nitrate injected through the irrigation system. No significant treatment differences in soluble solids concentration, titratable acidity, the ratio of soluble solids concentration to titratable acidity, percent juice, fruit color and fruit diameter were detected in fruit sampled in October. Similarly, in September, no significant differences in leaf nitrogen were found among treatments. These results do not support the hypothesis that applying the total seasonal application of nitrogen early in the season results in earlier orange maturity or larger fruit size, at least not for trees that have leaf N in the optimum range.


2009 ◽  
Vol 19 (1) ◽  
pp. 127-129 ◽  
Author(s):  
Fatih A. Canli ◽  
Hikmet Orhan

The objective of this study was to determine the effects of gibberellic acid (GA3) applications on fruit quality of ‘0900 Ziraat’ sweet cherry (Prunus avium), a low cropping and a large-fruited variety. ‘0900 Ziraat’ trees were sprayed with 0, 15, 20, and 25 ppm GA3, when the fruit were at their straw-yellow color stage. Fruit quality was evaluated at harvest in terms of size, firmness, pedicel length, and soluble solids content (SSC) to determine the optimum application. Fruit treated with GA3 were significantly larger and firmer than the controls. There were no differences in fruit firmness within the different levels of GA3 treatment; however, fruit treated with 20 and 25 ppm GA3 were significantly larger than the fruit treated with 15 ppm GA3. Trees treated with the optimum concentration of GA3 (25 ppm) in two different locations yielded fruit with 13.4% and 14.1% greater weight and 38% and 25% higher firmness. GA3 treatments did not affect pedicel length. The effect of GA3 application on SSC was complex; there was a significant interaction between GA3 and location. Being firmer than the controls, the GA3-treated fruit could be harvested at a later date than the controls.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 504D-504 ◽  
Author(s):  
Robert C. Ebel ◽  
Floyd M. Woods ◽  
Dave Himelrick

Brown rot of peaches is one of the most devastating diseases that can occur before and after harvest. There has been extensive research that has shown that ultraviolet light (UV-C) kills the fungus that causes brown rot. However, it is has not been determined whether UV-C will also change ripening and fruit quality. We applied UV-C to `Loring' peaches that were harvested 10 days before normal harvest. We intentionally picked the fruit early because we wanted to make sure the fruit had not entered the climacteric. The fruit were treated with UV-C and ethylene, skin color, firmness, and soluble solids were measured. We also held fruit at three storage temperatures to determine whether there may be an interaction between UV-C treatment and storage temperature. Ethylene was slightly higher for UV-C treated fruit at 70 °F (20 °C) and 55 °F (12 °C), but not at 40 °F (4 °C). However, there was very little effect on firmness and soluble solids. There was a slight delay in development of red blush. UV-C had little effect on ripening and peach fruit quality.


Sign in / Sign up

Export Citation Format

Share Document