scholarly journals Evaluation of Grapevine `Cabernet Sauvignon' Response to Two Deficit Irrigation Strategies

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 828A-828
Author(s):  
Ashley Basinger ◽  
Edward Hellman* ◽  
Steven Shelby

Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) were evaluated separately over two years on Vitis vinifera L. variety `Cabernet Sauvignon' for their applicability to commercial vineyards in Texas and to investigate their potential for enhancing grapevine acclimation and cold hardiness. PRD treatments compared the alternating-half-rootzone water application strategy of PRD to an equal volume of water applied to the entire rootzone and a 2× volume of water applied to the entire rootzone. RDI treatments compared the effects of deficit irrigation at different developmental stages of grapevine: post-fruit set to veraison; veraison to harvest; post-harvest; and a no-deficit control. The PRD treatment plots performed similarly to the equal volume treatment plots for yield and fruit composition. The double-volume treatment had a trend to higher yield in 2002 and statistically significant higher yields in 2003, and slightly lower soluble solids content of fruit in 2002. Thus, the two deficit treatments, PRD and Equal, experienced only a small reduction in performance while enabling reduced water usage. The PRD alternating-half-rootzone strategy demonstrated no advantage over a standard deficit irrigation strategy. Grapevines irrigated with the RDI strategy responded to this treatment most during the post-fruit set to veraison stage of development, which had lower yields and higher fruit soluble solids compared to the no-deficit treatment in 2002. Both PRD and RDI deficit irrigation strategies significantly increased the earliness and rate of periderm development on shoots in both years, but did not result in consistently greater cold hardiness compared to no-deficit treatments.

Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1983 ◽  
Author(s):  
Yan-lun Ju ◽  
Guo-qian Xu ◽  
Xiao-feng Yue ◽  
Xian-fang Zhao ◽  
Ting-yao Tu ◽  
...  

Amino acid contents and their derived volatile compositions in Cabernet Sauvignon grapes and wines after regulated deficit irrigation (RDI) were investigated during the 2015 and 2016 growing seasons in Yinchuan (NingXia, China). High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) were used for amino acid and volatile compound analyses. Three RDI strategies were tested: 60% (RDI-1), 70% (RDI-2), and 80% (RDI-3) of grapevine estimated evapotranspiration (ETc), and 100% ETc was used as the control group (CK). RDI-treated vines had lower yields and berry weights with higher total soluble solids than the control treatment. RDI-1 increased proline levels in berries and wines. RDI-2 enhanced tyrosine and asparagine levels in wines. RDI-3 enhanced arginine, alanine, valine, leucine, and isoleucine levels in berries and wines. RDI-2 and RDI-3 increased the concentrations of 2-methyl-1-butyl acetate, benzaldehyde, 3-methyl-1-pentanol, and 3-methyl-1-butanol in wines. The accumulation of volatile compounds was closely related to the amino acid concentrations—especially isoleucine, valine, and leucine—in grapes. Our results showed that RDI treatments altered amino acid concentrations and their derived volatile compositions in wines.


HortScience ◽  
2012 ◽  
Vol 47 (10) ◽  
pp. 1520-1524 ◽  
Author(s):  
Michael J. Costello ◽  
W. Keith Patterson

Regulated deficit irrigation (RDI) is a management strategy that on grape can improve shoot/fruit ratio, water efficiency, and wine quality but has the potential to reduce yield. As part of a study on the influence of RDI on leafhopper density, we evaluated the effects on grape yield, berry size, berry soluble solids, and wine color. The studies were conducted at commercial vineyards in the San Joaquin Valley and in the Paso Robles region, CA, with Cabernet Sauvignon as the cultivar. Water deficits were imposed at either 50% (moderate deficit) or 25% (severe deficit) of standard irrigation (the control) for a period of 3 or 6 weeks and initiated at berry set, leafhopper egg hatch, or veraison. Deficit irrigation decreased berry weight by 16.1% at the San Joaquin Valley site (Aliso) and 11.7% at one of the Paso Robles sites (Frankel) but did not differ at the other site (Steinbeck). Yield was decreased by the deficits by 18.1% at Aliso, 26.7% at Frankel 2001 (but not 2002), and 24% at Steinbeck. Wine color density was increased by 21.8% at Aliso, 34.4% at Frankel 2001 (but not 2002), and did not differ at Steinbeck. Soluble solids did not differ among treatments at any site. There was no difference in berry weight, yield, or color between the moderate and severe deficits. It appears that in central California, RDI such as these are likely to reduce yield but are only one factor among many variables affecting quality such as wine color.


2010 ◽  
Vol 67 (2) ◽  
pp. 164-169 ◽  
Author(s):  
Thomas Sotiropoulos ◽  
Dimitrios Kalfountzos ◽  
Ioannis Aleksiou ◽  
Spyros Kotsopoulos ◽  
Nikolaos Koutinas

Regulated deficit irrigation (RDI) involves inducing water stress during specific fruit growth phases by irrigating at less than full evapotranspiration. The objectives of this research were to study the effects of RDI perfomed at stage II of fruit growth and postharvest, on productivity of clingstone peaches, fruit quality as well as photosynthetic rate and midday leaf water potential. The research was conducted in a commercial clingstone peach (Prunus persica L. Batch cv. A-37) orchard in Greece. Trees were irrigated by means of microsprinklers and their frequency was determined using local meteorological station data and the FAO 56 Pennman-Monteith method. Photosynthetic rate was measured by a portable infrared gas analyzer. Midday leaf water potential was measured by the pressure chamber technique. During the years 2005 and 2006, the treatment RDII with irrigation applied at growth stage II of the peach tree did not affect productivity, fresh and dry mass of fruits. RDII reduced preharvest fruit drop in comparison to the control. RDII as well as the combined treatment RDII plus RDIP with irrigation applied at postharvest, at both years reduced shoot length of the vigorous shoots inside the canopy. RDII in comparison to the control increased the soluble solids content of the fruits and the ratio soluble solids/acidity. However it did not affect fruit acidity and fruit firmness. RDII as well as RDII plus RDIP in 2006 increased 'double' fruits and fruits with open cavity in comparison to the control and RDIP. Water savings were considerable and associated with the climatic conditions of each year.


Sign in / Sign up

Export Citation Format

Share Document