scholarly journals (166) Economic Return in Production of Lettuce and Cantaloupe Is Affected by Cropping System and Value of Hand Weeding

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1007B-1007
Author(s):  
Edmund J. Ogbuchiekwe ◽  
Mathieu Ngouajio ◽  
Milton E. McGiffen

Field experiments were established at the University of California Desert Station in Coachella Valley from 1998 to 2000. The main plot treatments included: 1) summer cowpea used as mulch in the fall; 2) summer cowpea incorporated into soil in the fall; 3) summer sudangrass incorporated into the soil in the fall; and 4) summer fallow (bare-ground). An economic comparison of cover crop treatments and crop management programs vs. the effect on yield, crop value, value of hand weeding, costs of production and net return, and dollar investment from each treatment was determined. Among the cropping systems tested in 1999, lettuce following the incorporation of a cowpea cover crop produced the highest yield (1082.43 boxes/ha), with a net return of $883.04/ha. The return for each dollar invested in the cowpea-incorporated system was an additional $0.65 if cowpea-incorporated was chosen over cowpea mulch. In 2000, the net return from lettuce following cowpea-incorporated was much higher with 1294.23 boxes/ha and a net return of $1698.46/ha. In 1999, cantaloupe grown in the cowpea-incorporated system had the highest net return of $973.34/ha, with 874.58 boxes. An additional $0.93 was made for choosing cowpea-incorporated over sudangrass. In 2000, cantaloupe grown in the cowpea-incorporated system had even higher yields than in 1999, producing 1522.89 boxes/ha and returning over $3000.00. And an additional $0.93 was made for choosing cowpea-incorporated over sudangrass cover crop. Overall, the rate of return on investment favored cowpea-incorporated over all cover crops.

HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1319-1323 ◽  
Author(s):  
Edmund J. Ogbuchiekwe ◽  
Milton E. McGiffen ◽  
Mathieu Ngouajio

Economic analysis compared the returns of cropping systems and management practices for production of fall lettuce (Lactuca sativa L.) and spring cantaloupe (Cucumis melo) following summer cover crops. The cover crop treatments included: cowpea [Vigna unguiculata (L.) Walp.] incorporated into the soil in the fall, cowpea used as mulch in the fall, sorghum sudangrass [Sorghum bicolor (L.) Moench] incorporated into the soil in the fall, and a bare ground control. Lettuce and cantaloupe were managed using conventional, integrated, and organic practices. The effect of each cropping system and management practice on crop yield, cost of production and net return was determined. In 1999 and 2000, yield and net return were greatest for cantaloupe and lettuce when the cowpea cover crop was incorporated into the soil before planting. The effect of crop management practice varied with type of cover crop. When lettuce was planted into cowpea-incorporated treatment in 1999, conventional management had the highest cash return followed by integrated crop management. In 2000, organically-grown lettuce after cowpea incorporated had the highest net return followed by integrated crop management grown under cowpea incorporated treatments. In 1999 and 2000, integrated cantaloupe following cowpea-incorporated treatment had the highest yield and cash-return. A 20% price premium for organic produce increased the net returns for the organic-grown lettuce and cantaloupe. Organic lettuce following cowpea-incorporated treatments produced a high net of $2,516/ha in 1999 and $5,971/ha in 2000. The net returns due to 20% organic premium price varied between 1999 and 2000 in cantaloupe production. They were highest for organic cantaloupe after bareground with a net return of $4,395 in 1999 and $3,148 in 2000 for organic cantaloupe after sudangrass.


2017 ◽  
Vol 31 (3) ◽  
pp. 348-355 ◽  
Author(s):  
Matthew S. Wiggins ◽  
Robert M. Hayes ◽  
Robert L. Nichols ◽  
Lawrence E. Steckel

Field experiments were conducted to evaluate the integration of cover crops and POST herbicides to control glyphosate-resistant Palmer amaranth in cotton. The winter-annual grasses accumulated the greatest amount of biomass and provided the most Palmer amaranth control. The estimates for the logistic regression would indicate that 1540 kg ha−1would delay Palmer amaranth emerging and growing to 10 cm by an estimated 16.5 days. The Palmer amaranth that emerged in the cereal rye and wheat cover crop treatments took a longer time to reach 10 cm compared to the hairy vetch and crimson clover treatments. POST herbicides were needed for adequate control of Palmer amaranth. The glufosinate-based weed control system provided greater control (75% vs 31%) of Palmer amaranth than did the glyphosate system. These results indicate that a POST only herbicide weed management system did not provide sufficient control of Palmer amaranth, even when used in conjunction with cover crops that produced a moderate level of biomass. Therefore, future recommendations for GR Palmer amaranth control will include integrating cover crops with PRE herbicides, overlaying residual herbicides in-season, timely POST herbicide applications, and hand weeding in order to achieve season-long control of this pest.


2021 ◽  
Vol 51 (8) ◽  
Author(s):  
Sandra Santana de Lima ◽  
Dérique Biassi ◽  
Cyndi dos Santos Ferreira ◽  
Priscila Silva Matos ◽  
Lucas Vasconcelos Rocha ◽  
...  

ABSTRACT: This study assessed the effect of cover crop biomass on the epigeal fauna of an organic eggplant (Solanum melongena L.) cropping system. A randomized block design was used, with four cover crop treatments: brachiaria, crotalaria, millet, and cocktail (brachiaria, crotalaria and millet). The epigeal faunal indices were determined at each plot. The epigeal fauna of a secondary forest site was also assessed for comparison. Epigeal individuals were collected using pitfall traps at two sampling periods (110 and 180 days after mowing cover crops). Soil samples were collected for determination of physical and chemic properties. 2032 individuals were captured in the first sampling and 3806 individuals in the second. The highest values of wealth in the first collection were observed in the millet and cocktail areas. Cluster analysis showed similarity of epigeal faunal groups between millet and brachiaria plots at the first sampling and between cocktail and crotalaria sites at the second sampling. Co-inertia analysis showed a significant covariance between epigeal fauna at the second sampling and soil properties. The cover crops management had a beneficial influence on the activity, wealth and ecological indexes, in both sampling periods. The positive association observed between epigeal faunal groups and soil physical and chemical properties demonstrates the efficiency of cover crops in improving soil quality in organic cropping systems.


2018 ◽  
Vol 35 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Alejandro Plastina ◽  
Fangge Liu ◽  
Fernando Miguez ◽  
Sarah Carlson

AbstractDespite being generally accepted as a promising conservation practice to reduce nitrate pollution and promote soil sustainability, cover crop adoption in Midwestern US agriculture is low. Based on focus groups, surveys and partial budgets, we calculated the annual net returns to cover crop use for farmers in Illinois, Iowa and Minnesota; and elicited farmers’ perceptions about the pros and cons of incorporating cover crops to their row cropping systems. The novelty of our methodology resides in comparing each farmer's practices in the portion of their cropping system with cover crops (typically small), against their practices in the other portion of their cropping system without cover crops. The resulting comparisons, accounting for farmer heterogeneity, are more robust than the typical effects calculated by comparing indicators across cover crop users and unrelated non-adopters. Our results highlight the complicated nature of integrating cover crops into the crop production system and show that cover crops affect whole farm profitability through several channels besides establishment and termination costs. Despite farmers’ positive perceptions about cover crops and the availability of cost-share programs, calculated annual net returns to cover crops use were negative for most participants.


2021 ◽  
Vol 13 (4) ◽  
pp. 1696
Author(s):  
Andrea Cecchin ◽  
Ghasideh Pourhashem ◽  
Russ W. Gesch ◽  
Yesuf A. Mohammed ◽  
Swetabh Patel ◽  
...  

Introducing cover crops is a form of ecological intensification that can potentially reduce local, regional and global environmental impacts of soybean cropping systems. An assessment of multiple environmental impacts (global warming potential, eutrophication, soil erosion and soil organic carbon variation) was performed on a continuous soybean system in the U.S. upper Midwest. Four sequences were assessed and compared: a soybean cropping system with winter camelina, field pennycress, or winter rye as cover crop, plus a control (sole soybean). Cover crops were interseeded into standing soybean in Year 1, while in Year 2 soybean was relay-cropped into standing camelina or pennycress. Rye was terminated before sowing soybean. When compared with the control, sequences with cover crops showed lower eutrophication potential (4–9% reduction) and soil erosion (5–32% reduction) per ha year−1, in addition to a lower global warming potential (3–8% reduction) when the cover crop was not fertilized. However, when the economic component was included in the assessment, and the results expressed per USD net margin, the sequences with cover crops significantly reduced their performance in all categories of impact considered. A further optimization of field management for camelina and pennycress is recommended to make the cropping system more sustainable.


2016 ◽  
Vol 30 (2) ◽  
pp. 559-572 ◽  
Author(s):  
Miriam F. Gieske ◽  
Donald L. Wyse ◽  
Beverly R. Durgan

Weeds often limit productivity of organic cropping systems. Radish is a fast-growing, potentially allelopathic cover crop that has the potential to improve weed management in organic systems. To evaluate the effect of radish on density, cover, and biomass of weeds in organically managed corn, 2-yr field experiments were conducted over 4 site years. Four cover-crop planting treatments (fall-only, spring-only, fall + spring, and no cover) were tested in factorial with three cultivation treatments (standard [three to four passes], false seedbed [standard with a false seedbed], and reduced [two passes]). All plots were tilled before planting. Shoot biomass averaged 3,057 kg ha−1for fall-seeded radish and 385 kg ha−1for spring-seeded radish. Radish cover crops generally did not improve management of weeds during the corn growing season. However, in the absence of a false seedbed, fall-seeded radish reduced field pennycress density from 9 to < 1 plant m−2and horseweed density from 6 to 2 plants m−2in spring in site years where these weeds were present. Fall-seeded radish also reduced cover of summer annual weeds during the fall cover-crop growing season from 4 to 0% in 1 site year, preventing these weeds from setting seed. Radish cover crops did not affect corn grain yield.


2020 ◽  
Vol 14 (7) ◽  
pp. 2599-2610
Author(s):  
Fagaye Sissoko ◽  
Amadou Traore ◽  
Sidiki Diarra ◽  
Mamadou Traore

En zone soudano-sahélienne, la productivité des cultures est limitée par les effets néfastes du changement climatique et la pauvreté des sols. L’insertion des plantes de couverture dans les systèmes de production pourrait être une alternative d’amélioration des rendements et de la biomasse. Pour atteindre cet objectif, la pratique conventionnelle de la culture du maïs a été comparée pendant cinq années (2014-2018), à quatre systèmes de culture associant des plantes de couverture. Le dispositif expérimental utilisé a été un bloc de Fisher avec 6 traitements en 4 répétitions. Les résultats ont montré que l’insertion du Cajanus cajan, du Stylosanthes hamata, du Brachiaria ruziziensis et Mucuna cochinchinensis dans un système de culture à base du maïs permet d’améliorer la production de biomasse fourragère sans négativement affecter son rendement. Utilisée dans la supplémentation des animaux, la biomasse produite peut nourrir pendant 90 jours 7 unités de bétail tropical (UBT) en culture pure du maïs et 8 à 13 unités de bétail tropical (UBT) en fonction du type de plantes de couverture. Dans le cadre de la production fumure organique, les mêmes tendances de variations ont été obtenues en fonction des systèmes de culture. L’insertion des plantes de couverture est un élément intégrateur agriculture-élevage.Mots clés : Changement climatique, maïs, légumineuse, biomasse fourragère, zone Soudano-sahélienne, Mali   English Title: Cover crop insertion effect on productivity of maize-based cropping system in the context of crop-livestock integrationIn Sudano-Sahelian zone, crop productivity is limited by climate change effect and poor soils. Inserting cover crops into production systems could be an alternative to improve yields and biomass. To achieve this goal, conventional practice of maize cultivation was compared over a five-year period (2014-2018) with four cropping systems using cover crops. The experimental design used was a Fisher block with 6 treatments in 4 replicates. The results showed that the insertion of Cajanus cajan, Stylosanthes hamata, Brachiaria ruziziensis and Mucuna cochinchinensis in a maize-based cropping system improves biomass production without negatively affecting its yield. Used in animal supplementation, the biomass produced can feed 7 Tropical Livestock Units (UBT) of pure maize crop and 8 to 13 UBT for 90 days, depending on the type of cover crop. In the case of organic manure production, the same variations were obtained depending on cropping systems. The insertion of cover crops in cropping system is an integrating agriculture-livestock component.Keywords: Climate change, maize, legumes, fodder biomass, fodder biomass, Sudano-Sahelian zone, Mali.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fábio Rafael Echer ◽  
Vinicius José Souza Peres ◽  
Ciro Antonio Rosolem

AbstractUrochloa grasses are used as cover crops in tropical cropping systems under no-till to improve nutrient cycling. We hypothesized that potassium (K) applied to ruzigrass (Urochloa ruziziensis) grown before cotton in a sandy soil could be timely cycled and ensure nutrition, yield and quality of cotton cultivars with no need to split K application. Field experiments were performed with different K managements, applied to ruzigrass, to cotton grown after grass and without grass, or split as it is done conventionally. No yield differences were observed on K fertilized treatments. At 0 K, cotton yields were low, but they increased by 16% when ruzigrass was grown before, and short fiber content was lower when there was more K available. Ruzigrass grown before cotton increased micronaire as much as the application of 116 kg ha−1 of K without the grass. Fiber maturity was higher when K was applied to the grass or split in the grass and sidedressed in cotton. Growing ruzigrass before cotton allows for early K fertilization, i.e., application of all the fertilizer to de grass, since the nutrient is recycled, and cotton K nutrition is not harmed. Eventually K rates could be reduced as a result of higher efficiency of the systems.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Quentin Struelens ◽  
Diego Mina ◽  
Olivier Dangles

Abstract Background Landscape composition has the potential to foster regulating ecosystem services such as pollination and biocontrol in temperate regions. However, most landscape studies do not take pesticide use into account even though it is the main control strategy worldwide and has negative impacts on beneficial insects. Moreover, few studies have explored these combined effects in smallholder cropping system with diverse landscapes and small cultivated fields. Methods We assessed the effect of semi-natural cover and pesticide use on pollinator and herbivore abundances and functions in 9 fields in the Ecuadorian Andes through participatory experiments with smallholder farmers. We performed a path analysis to quantify the effects of landscape and pesticide use on herbivory, pollination and ultimately yield. Results Pesticide use significantly reduced pollinator abundance but had no significant effect on pest abundance. Similarly, we found non-significant effects of landscape composition on either herbivory and pollination. The study also provides new information on understudied Andean lupine’s pests and pollinators, whose application for small farmers is discussed. Finally, we hypothesize that peculiarities of tropical smallholder cropping systems and landscapes could explain the non-significant landscape effects on insect-based processes, which calls for more research in places outside the well-studied temperate region. Conclusions Landscape composition did not show any significant effect on pest and pollinator while pesticide use decreased the abundance pollinators, but with no significant effect on yield. This study also provides information about Andean lupine reproduction and overcompensation mechanisms that could be of interest for local farmers and researchers of this understudied crop.


2017 ◽  
Vol 32 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Matheus G. Palhano ◽  
Jason K. Norsworthy ◽  
Tom Barber

AbstractWith the recent confirmation of protoporphyrinogen oxidase (PPO)-resistant Palmer amaranth in the US South, concern is increasing about the sustainability of weed management in cotton production systems. Cover crops can help to alleviate this problem, as they can suppress weed emergence via allelochemicals and/or a physical residue barrier. Field experiments were conducted in 2014 and 2015 at the Arkansas Agricultural Research and Extension Center to evaluate various cover crops for suppressing weed emergence and protecting cotton yield. In both years, cereal rye and wheat had the highest biomass production, whereas the amount of biomass present in spring did not differ among the remaining cover crops. All cover crops initially diminished Palmer amaranth emergence. However, cereal rye provided the greatest suppression, with 83% less emergence than in no cover crop plots. Physical suppression of Palmer amaranth and other weeds with cereal residues is probably the greatest contributor to reducing weed emergence. Seed cotton yield in the legume and rapeseed cover crop plots were similar when compared with the no cover crop treatment. The seed cotton yield collected from cereal cover crop plots was lower than from other treatments due to decreased cotton stand.


Sign in / Sign up

Export Citation Format

Share Document