scholarly journals APPLE ROOT GROWTH, TURNOVER, AND DISTRIBUTION UNDER DIFFERENT ORCHARD GROUNDCOVER MANAGEMENT SYSTEMS

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 492E-493
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Michael G. Brown

Minirhizotrons were employed to study new root occurrence, turnover, and depth distribution of apple (Malus ×domestica Borkh.) rootstocks under four groundcover management systems (GMS): preemergence herbicide (Pre-H), postemergence herbicide (Post-H), mowed sod (Grass) and hardwood bark mulch (Mulch) that have been maintained since 1992 in an orchard near Ithaca, NY. Two root observation tubes were installed on both sides of one tree in three replicates for each GMS treatment. Root observations were taken at 2–3 week intervals during growing seasons of 2002 and 2003. Tree growth and yield data were collected annually since 1992. The Mulch and Post-H treatments had bigger trees and higher yields than other treatments; whereas the Grass treatment had the smallest trees and lowest yields. Higher number of new roots was observed in a light crop year (2002) than a heavy crop year (2003). Mulch trees had more shallow roots and Grass trees had fewer total roots than other treatments. Root diameter was positively correlated with overwintering root survival. The Pre-H GMS had higher root mortality during a hot and dry growing season (2002). GMS treatments affected root number and root depth distribution patterns. Hot and dry weather conditions and crop load reduced new root emergence, increased root mortality and reduced root median lifespan. GMS treatments together with environmental factors affected root growth, turnover and distribution.

HortScience ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Michael G. Brown

Minirhizotrons were used to study root emergence, turnover, and depth distribution of apple (Malus ×domestica Borkh.) rootstocks (M.9/MM.111) under four groundcover management systems (GMSs)—pre-emergence herbicide (Pre-H), postemergence herbicide (Post-H), mowed sod grass (Grass), and hardwood bark mulch (Mulch)—that had been maintained since 1992 in an orchard near Ithaca, NY. Two root observation tubes were installed on both sides of one tree in three replicates for each GMS treatment. Roots were observed by camera at 2- to 3-weekly intervals during the growing seasons of 2002 and 2003 and from whole tree excavations in Apr. 2000. Tree growth and yield observations from 1992 to 2003 showed that Mulch and Post-H treatments produced more tree growth and higher yields than other treatments during most years; the Grass treatment usually had the smallest trees and lowest yields. More root emergence was observed in a light crop year (2002) than in a heavy crop year (2003). Pre-H treatment trees had more total roots and new roots than all other treatments, and trees in Grass plots had fewer total roots than others. Trees in Mulch plots had more shallow roots, and trees in Grass plots had more deep roots than others. Root diameter was positively correlated with overwintering root survival. The Pre-H treatment trees had greater root mortality than other trees during an unusually hot and dry growing season (2002) and this was attributed to higher shallow soil temperatures in this treatment. The GMS treatments affected root number and root depth distribution patterns. Despite microsprinkler irrigation, hot, dry weather conditions coincided with decreased root growth, increased root mortality, and reduced root median lifespan. GMS treatments affected root growth, turnover, and distribution at this orchard, and these differences were linked with long-term trends in tree growth and fruit production in this study.


2021 ◽  
Vol 17 (5) ◽  
pp. 7-15
Author(s):  
Sindi Elen Senff ◽  
Viviane de Fátima Milcheski ◽  
Ana Caroline Basniak Konkol ◽  
Ana Carolina da Costa Lara Fioreze

Sweet potato (Ipomoea batatasL.) is a crop with high market demands because of its well-known health benefits. Limited use of improved clones reduces the crop’s income potential. Plant breeding programs seek to selectgenotypes with good results in a variety of environments by evaluating the interaction effects of genotypes and environments. This study aimed to assess Clone × Growing season effects on morphological and productive parameters of sweet potato clones grown in the municipality of Curitibanos, Santa Catarina, Brazil, in 2016/2017 and 2017/2018. The following clones were evaluated: Brazlândia Rosada, BRS Amélia, Beauregard, BrazlândiaRoxa, and BRS Rubissol. A randomized block design with three replications was used to investigate root length, root diameter, mean root weight, total root number, number of marketable roots, total yield, and marketable yield. Data were subjected to one-way and two-way analysis of variance. Beauregard afforded the largest number of marketable roots and was stable in both growing seasons. Beauregard, Brazlândia Roxa, and Brazlândia Rosada differed in total number of roots between growing seasons. There were no significant differences between growing seasons in mean root weight; BRS Amélia afforded a higher mean root weight than Brazlândia Rosada. Beauregard did not differ in total or marketable yield between growing seasons and provided higher yields than the other clones. BRS Rubissol and Beauregard were found to be the most promising for sweet potato cultivation under the environmental conditions of Curitibanos.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 267B-267
Author(s):  
Daniel I. Leskovar ◽  
Mark C. Black

Effects of spinach crop management strategies on white rust (Albugo occidentalis), leaf chlorosis, root growth and yield were evaluated in winter 1991/92. Irrigation main plots were low (I-low), medium (I-med) and high (I-high). Fungicide split-plots were none (F0), metalaxyl at planting (F1), and metalaxyl at planting plus experimental CGA 2014 foliar (F2). Genotype split-split-plots were ACX 5044 and ARK 88-354. The Gompertz model best described the white rust disease progress. At all irrigation levels, ACX 5044 had the higher rate of disease increase (rG) and earlier disease onset than ARK 88-354. Metalaxyl delayed disease onset and rG in ACX 5044 only at I-low and I-med, but not at I-high. ARK 88-354 was the least sensitive to fungicides. Yellowness and chlorosis, estimated by spectrophotometric measurements, were higher at I-med and I-high, and with F0, while ARK 88-354 had less chlorosis than ACX 5044. Root diameter was increased with F1 compared to F0. Lateral and tap root fresh and dry weights were higher for ARK 88-354. Yields for ARK 88-354 were significantly higher than ACX 5044. No treatments influenced the number of live or aphids parasitized by Pandora neoaphidis.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2148
Author(s):  
Jonathan A. Lafond ◽  
Silvio J. Gumiere ◽  
Virginie Vanlandeghem ◽  
Jacques Gallichand ◽  
Alain N. Rousseau ◽  
...  

Integrated water management has become a priority for cropping systems where subirrigation is possible. Compared to conventional sprinkler irrigation, the controlling water table can lead to a substantial increase in yield and water use efficiency with less pumping energy requirements. Knowing the spatiotemporal distribution of water table depth (WTD) and soil properties should help perform intelligent, integrated water management. Observation wells were installed in cranberry fields with different water management systems: Bottom, with good drainage and controlled WTD management; Surface, with good drainage and sprinkler irrigation management; Natural, without drainage, or with imperfectly drained and conventional sprinkler irrigation. During the 2017–2020 growing seasons, WTD was monitored on an hourly basis, while precipitation was measured at each site. Multi-frequential periodogram analysis revealed a dominant periodic component of 40 days each year in WTD fluctuations for the Bottom and Surface systems; for the Natural system, periodicity was heterogeneous and ranged from 2 to 6 weeks. Temporal cross correlations with precipitation show that for almost all the sites, there is a 3 to 9 h lag before WTD rises; one exception is a subirrigation site. These results indicate that automatic water table management based on continuously updated knowledge could contribute to integrated water management systems, by using precipitation-based models to predict WTD.


2021 ◽  
pp. 1-25
Author(s):  
Mandy Bish ◽  
Brian Dintelmann ◽  
Eric Oseland ◽  
Jacob Vaughn ◽  
Kevin Bradley

Abstract The evolution of herbicide-resistant weeds has resulted in the necessity to integrate non-chemical control methods with chemicals for effective management in crop production systems. In soybean, control of the pigweed species, particularly herbicide-resistant waterhemp and Palmer amaranth, have become predominant concerns. Cereal rye planted as a winter cover crop can effectively suppress early-season weed emergence in soybean, including waterhemp, when planted at a rate of 123 kg ha−1. The objectives of this study were to determine the effects of different cereal rye seeding rates (0, 34, 56, 79, 110, and 123 kg ha−1) on early-season waterhemp suppression and soybean growth and yield. Soybean was planted into fall-seeded cereal rye, which was terminated within four days of soybean planting. The experiment was conducted over the 2018, 2019, and 2020 growing seasons in Columbia, Missouri. Effects of cereal rye on early-season waterhemp suppression varied by year and were most consistent at 56 kg ha−1 or higher seeding rates. Linear regression analysis of cereal rye biomass, height, or stand at soybean planting showed inverse relationships with waterhemp emergence. No adverse effects to soybean growth or yield were observed at any of the cereal rye seeding rates relative to plots that lacked cereal rye cover. Result differences among the years suggest that the successfulness of cereal rye on suppression of early-season waterhemp emergence is likely influenced by the amount of waterhemp seed present in the soil seed bank.


2021 ◽  
Vol 787 ◽  
pp. 147589
Author(s):  
Xiaolong Liang ◽  
Yusong Wang ◽  
Ying Zhang ◽  
Bingxue Li ◽  
Mark Radosevich

2014 ◽  
Vol 24 (1-2) ◽  
pp. 211-218
Author(s):  
PK Kundu ◽  
TK Acharjee ◽  
MA Mojid

The possibility of using sugar mill’s wastewater/effluent in irrigation was evaluated by investigating the effects of wastewater on growth and yield of wheat (Triticum aestivum cv. Prodip). The experiment was conducted at North Bengal Sugar Mill site in Natore during December 2011 to March 2012. Three irrigation treatments (I1: irrigation with fresh/tubewell water, I2: irrigation with a mixture of fresh and wastewater at 1:1 ratio and I3: irrigation with wastewater) under a main factor and three fertilizer treatments (F0: no application of fertilizer, F1: half dose fertilizer and F2: full dose fertilizer) under a sub factor were evaluated. The experiment was laid out in a split-plot design with three replications of the treatments. Wheat was grown with three irrigations totaling 14 cm applied at 4, 26 and 43 days after sowing (DAS). Important growth and yield data of the crop were recorded. The highest grain yield of 1.829 t/ha was obtained under mixed water irrigation and the lowest grain yield of 1.469 t/ha was obtained under wastewater irrigation. The three irrigation treatments, however, provided statistically similar (p = 0.05) grain yield. For the interaction between irrigation and fertilizers, mixed water irrigation and full dose fertilizer application (I2F2) provided significantly higher grain yield (2.757 t/ha) than all other treatment combinations. The second highest yield, produced under freshwater irrigation and full dose fertilizer (I1F2), was statistically similar to the yield under wastewater irrigation and full dose fertilizer (I3F2). Results of this experiment thus exposed good prospects of irrigating wheat by sugar mills’ wastewater.DOI: http://dx.doi.org/10.3329/pa.v24i1-2.19174 Progress. Agric. 24(1&2): 211 - 218, 2013


Weed Science ◽  
1992 ◽  
Vol 40 (3) ◽  
pp. 460-464
Author(s):  
Ken M. Nawolsky ◽  
Ian N. Morrison ◽  
George M. Marshall ◽  
Allen E. Smith

The relationships between the actual amount of spring-applied trifluralin detected in soil at seeding, initial injury to flax, and crop growth and yield were investigated in southern Manitoba over three growing seasons. As the amount of trifluralin in the soil increased, flax density and dry matter production decreased, such that at a soil concentration equivalent to 1 kg ai ha−1trifluralin, the two were reduced by 40 and 49%, respectively. Recovery from early-season injury was characterized by enhanced crop growth rates (CGRs) and net assimilation rates (NARs) of surviving plants during the remainder of the growing season. Maximum recovery occurred in plots where trifluralin levels in the soil were between 0.8 and 1 kg ha−1at seeding. During the interval between stem elongation and bud initiation, CGRs and NARs of flax in the trifluralin-treated plots exceeded those of flax in the untreated plots by up to 1.5 and 1.2 times, respectively. Additionally, the number of branches per plant increased linearly as trifluralin amounts in the soil increased. Flax seed yield was decreased by trifluralin as described by the equation: flax seed (% of untreated control) = 104.9 - 13.3[trifluralin detected (kg ha−1) at seeding]. Based on this equation, trifluralin levels in the soil of up to 0.7 kg ai ha−1caused less than a 5% reduction in flax yield under weed-free conditions.


Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


Sign in / Sign up

Export Citation Format

Share Document