scholarly journals Identification of Resistance to Peppery Leaf Spot among Brassica juncea and Brassica rapa Plant Introductions

HortScience ◽  
2007 ◽  
Vol 42 (5) ◽  
pp. 1140-1143 ◽  
Author(s):  
W. Patrick Wechter ◽  
Mark W. Farnham ◽  
J. Powell Smith ◽  
Anthony P. Keinath

Brassica leafy greens (Brassica juncea L. and Brassica rapa L.) represent one of the most economically important vegetable crop groups in the southeastern United States. In the last 10 years, numerous occurrences of a leaf-spot disease on these leafy vegetables have been reported in several states. This disease, known as peppery leaf spot, is now causing serious crop losses and has been attributed to the bacterial phytopathogen Pseudomonas syringae pv. maculicola (Psm). To date, it appears that all cultivars of the Brassica leafy greens are susceptible, and available pesticides for control of this disease appear unable to reduce the disease to acceptable levels. Thus, we undertook a search for potential resistance to this disease among accessions of B. juncea and B. rapa included in the U.S. Plant Introduction (PI) collection. In greenhouse trials, we screened commercial cultivars and 672 U.S. PIs (226 B. juncea and 446 B. rapa) for resistance to Psm with artificial inoculation. Although severity of disease symptoms was significantly different among inoculated accessions, no acceptable levels of resistance were found in any of the more than 400 B. rapa accessions tested. Only two B. juncea accessions (PI 195553 and G 30988) of 226 tested had acceptable levels of resistance that might prove economically useful.

Plant Disease ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 3199-3208 ◽  
Author(s):  
Maryam Ansari ◽  
S. Mohsen Taghavi ◽  
Sadegh Zarei ◽  
Soraya Mehrb-Moghadam ◽  
Hamzeh Mafakheri ◽  
...  

In this study, we provide a polyphasic characterization of 18 Pseudomonas spp. strains associated with alfalfa leaf spot symptoms in Iran. All of the strains were pathogenic on alfalfa, although the aggressiveness and symptomology varied among the strains. All strains but one were pathogenic on broad bean, cucumber, honeydew, and zucchini, whereas only a fraction of the strains were pathogenic on sugar beet, tomato, and wheat. Syringomycin biosynthesis genes (syrB1 and syrP) were detected using the corresponding PCR primers in all of the strains isolated from alfalfa. Phylogenetic analyses using the sequences of four housekeeping genes (gapA, gltA, gyrB, and rpoD) revealed that all of the strains except one (Als34) belong to phylogroup 2b of P. syringae sensu lato, whereas strain Als34 placed within phylogroup 1 close to the type strain of P. syringae pv. apii. Among the phylogroup 2b strains, nine strains were phylogenetically close to the P. syringae pv. aptata clade, whereas the remainder were scattered among P. syringae pv. atrofaciens and P. syringae pv. syringae strains. Pathogenicity and host range assays of the bacterial strains evaluated in this study on a set of taxonomically diverse plant species did not allow us to assign a “pathovar” status to the alfalfa strains. However, these results provide novel insight into the host range and phylogenetic position of the alfalfa-pathogenic members of P. syringae sensu lato, and they reveal that phenotypically and genotypically heterogeneous strains of the pathogen cause bacterial leaf spot of alfalfa.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2480
Author(s):  
Waheed Akram ◽  
Guihua Li ◽  
Aqeel Ahmad ◽  
Tehmina Anjum ◽  
Basharat Ali ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1861-1861
Author(s):  
Waheed Akram ◽  
Guihua Li ◽  
Aqeel Ahmad ◽  
Tehmina Anjum ◽  
Basharat Ali ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Dayu Lan ◽  
Fangling Shu ◽  
Yanhui Lu ◽  
Anfa Shou ◽  
Wei Lin ◽  
...  

Tobacco (Nicotiana tabacum L.), one of the chief commercial crops, is wildly cultivated worldwide. In June 2020 and 2021, an unknown bacterial leaf spot on tobacco was found in Hezhou and Hechi City, Guangxi, China. 30% of the tobacco were affected and the rate of diseased leaves reached about 10% in the field under high temperature and rainstorm. The disease mainly damaged the middle and top leaves of tobacco plants at vigorous growing stage. The initial symptoms were water-soaked spots on the frontal half of a leaf, and then expanded into circular to irregular spots with a yellow halo at the edge. The spots mostly appeared dark brown at high air humidity, while yellow brown at low humidity and exhibited a concentric pattern. In severe cases, the lesions coalesced and the whole leaf was densely covered with lesions, resulting in the loss of baking value. A bacterium was consistently isolated from diseased leaf tissues on nutrient agar (NA). Growth on NA was predominantly grayish white circular bacterial colonies with smooth margins, and the bacterium is rod-shaped, gram-negative and fluorescent on King’s B medium. Seven isolates (ND04A-ND04C and ZSXF02-ZSXF05) were selected for molecular identification and pathogenicity tests. Genomic DNA of the bacterium was extracted and the housekeeping gene of cts (encoding citrate synthase) was amplified with the primers cts-Fs/cts-Rs (forward primer cts-Fs: 5’-CCCGTCGAGCTGCCAATWCTGA-3’; reverse primer cts-Rs: 5’-ATCTCGCACGGSGTRTTGAACATC-3’) (Berge et al. 2014; Sarkar et al. 2004). 409-bp cts gene sequences were deposited in the GenBank database for seven isolates (accession no. OK105110-OK105116). Sequence of seven isolates shared 100% identity with several Pseudomonas cichorii strains within the GenBank database (accession no. KY940268 and KY940271), and the phylogenetic tree of cts genes of the seven isolates clustered with the phylogroup 11 of Pseudomonas syringae (accession no. KJ877799 and KJ878111), which was classified as P.cichorii. To satisfy Koch’s postulates, a pathogenicity test was tested by using a needle to dip a suspension of the bacterium (108 CFU/ml) and pricking three holes in the tobacco leaf. The control plants leaves were needled with sterile water. Each tobacco plant was inoculated with three leaves, and the test was repeated three times. All plants were placed in transparent plastic boxes and incubated in a greenhouse at 25 ± 3°C. The water-soaked spots appeared 24h after inoculation and quickly expanded through leaf veins. Three days after inoculation, all the inoculated leaves showed symptoms similar to those observed in the field. Control plants remained healthy. Only P. cichorii was successfully re-isolated from the lesions, confirming Koch’s postulates. Pseudomonas cichorii can infect eggplant, lettuce, tomatoand other crops, and has a wide range of hosts (Timilsina et al. 2017; Ullah et al. 2015). To our knowledge, this is the first report of P. cichorii causing leaf spot on tobacco in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lei Li ◽  
Yishuo Huang ◽  
Yanxia Shi ◽  
A LI CHAI ◽  
Xuewen Xie ◽  
...  

Coriander (Coriandrum sativum L.) or Chinese parsley is a culinary herb with multiple medicinal effects that are widely used in cooking and traditional medicine. From September to November 2019, symptoms were observed in 2-month-old coriander plants from coriander fields in Lanzhou and Wenzhou, China. The disease developed rapidly under cold and wet climatic conditions, and the infection rate was almost 80% in open coriander fields. Typical symptoms on leaves included small, water-soaked blotches and irregular brown spots surrounding haloes; as the disease progressed, the spots coalesced into necrotic areas. Symptomatic leaf tissue was surface sterilized, macerated in sterile distilled water, and cultured on nutrient agar plates at 28 °C for 48 h (Koike and Bull, 2006). After incubation, six bacterial colonies, which were individually isolated from collected samples from two different areas, were selected for further study. Colonies on NA plate were small, round, raised, white to cream-colored, and had smooth margins. All bacterial isolates were gram-negative, rod-shaped and nonfluorescent on King's B medium. The bacteria were positive for levan production, Tween 80 hydrolysis, and tobacco hypersensitivity but negative for oxidase, potato slice rot test, arginine dihydrolase, ice nucleation activity, indole production and H2S production. The suspension of representative isolate for inoculating of plants was obtained from single colony on King's B medium for 2-3 days at 28 °C. DNA was extracted from bacterial suspensions of YS2003200102 cultured in 20 ml of King’s B medium broth at 28 °C for 1 day. Extraction was performed with a TIANamp Bacterial DNA Kit (TIANGEN, China) according to the manufacturer’s recommendations. The pathogen was confirmed by amplification and sequencing of the glyceraldehyde-3-phosphate dehydrogenase A (gapA) gene, the citrate synthase (gltA) gene, the DNA gyrase B (gyrB) gene and the RNA polymerase sigma factor 70 (rpoD) gene using gapA-For/gapA-Rev, gltA-For/gltA-Rev, gyrB-For/gryB-Rev, rpoD-For/rpoD-Rev primers, respectively (Popović et al., 2019). The sequences of the PCR products were deposited in GenBank with accession numbers MZ681931 (gapA), MZ681932 (gltA), MZ681933 (gyrB), and MZ681934 (rpoD). Phylogenetic analysis of multiple genes (Xu and Miller, 2013) was conducted with the maximum likelihood method using MEGA7. The sequences of our isolates and ten published sequences of P. syringae pv. coriandricola were clustered into one clade with a 100% confidence level. To confirm the pathogenicity of isolate YS2003200102, 2-month-old healthy coriander plants were inoculated by spraying the leaves with a bacterial suspension (108 CFU ml−1) at 28 °C incubation temperature and 70% relative humidity condition, and sterile distilled water was applied as a negative control treatment (Cazorla et al. 2005). Three replicates were conducted for every isolate, and each replicate included 6 coriander plants. After twelve days, only the inoculated leaves with bacterial suspension showed bacterial leaf spot resembling those observed on naturally infected coriander leaves. Cultures re-isolated from symptomatic leaves showed the same morphological characteristics and molecular traits as those initially isolated from infected leaves in the field. This bacterium was previously reported causing leaf spot of coriander in India and Spain (Gupta et al. 2013; Cazorla et al. 2005). To our knowledge, this is the first report of P. syringae pv. coriandricola causing leaf spot disease on coriander in China. Studies are needed on strategies to manage P. syringae pv. coriandricola in crops, because its prevalence may cause yield loss on coriander in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dongli Liu ◽  
Jing Li ◽  
Saisai Zhang ◽  
Xiangjing Wang ◽  
Wensheng Xiang ◽  
...  

Orychophragmus violaceus (L.) O. E. Schulz, also called February orchid or Chinese violet cress, belongs to the Brassicaceae family and is widely cultivated as a green manure and garden plant in China. During the prolonged rainy period in August 2020, leaf spot disease of O. violaceus was observed in the garden of Northeast Agricultural University, Harbin, Heilongjiang province. One week after the rainy days, the disease became more serious and the disease incidence ultimately reached approximately 80%. The disease symptoms began as small brown spots on the leaves, and gradually expanded to irregular or circular spots. As the disease progressed, spots became withered with grayish-white centers and surrounded by dark brown margins. Later on, the centers collapsed into holes. For severely affected plants, the spots coalesced into large necrotic areas and resulted in premature defoliation. No conidiophores or hyphae were present, and disease symptoms were not observed on other tissues of O. violaceus. To isolate the pathogen, ten leaves with typical symptoms were collected from different individual plants. Small square leaf pieces (5×5 mm) were excised from the junction of diseased and healthy tissues, disinfected in 75% ethanol solution for 1 min, rinsed in sterile distilled water, and then transferred to Petri dishes (9 cm in diameter) containing potato dextrose agar (PDA). After 3 days of incubation at 25 oC in darkness, newly grown-out mycelia were transferred onto fresh PDA and purified by single-spore isolation. Nine fungal isolates (NEAU-1 ~ NEAU-9) showing similar morphological characteristics were obtained and no other fungi were isolated. The isolation frequency from the leaves was almost 90%. On PDA plates, all colonies were grey-white with loose and cottony aerial hyphae, and then turned olive-green and eventually brown with grey-white margins. The fungus formed pale brown conidiophores with sparsely branched chains on potato carrot agar (PCA) plates after incubation at 25 oC in darkness for 7 days. Conidia were ellipsoidal or ovoid, light brown, and ranged from 18.4 to 59.1 × 9.2 to 22.3 µm in size, with zero to two longitudinal septa and one to five transverse septa and with a cylindrical light brown beak (n = 50). Based on the cultural and morphological characteristics, the fungus was tentatively identified as Alternaria tenuissima (Simmons 2007). Genomic DNA was extracted from the mycelia of five selected isolates (NEAU-1 ~ NEAU-5). The internal transcribed spacer region (ITS) was amplified and sequenced using primers ITS1/ITS4 (White et al., 1990). Blast analysis demonstrated that these five isolates had the same ITS sequence, and the ITS sequence of representative strain NEAU-5 (GenBank accession No. MW139354) showed 100% identity with the type strains of Alternaria alternata CBS916.96 and Alternaria tenuissima CBS918.96. Furthermore, the translation elongation factor 1-α gene (TEF), RNA polymerase II second largest subunit (RPB2), and glyceraldehyde 3-phosphate dehydrogenase (GPD) of representative strain NEAU-5 were amplified and sequenced using primers EF1-728F/EF1-986R (Carbone and Kohn 1999), RPB2-5F2/RPB2-5R (Sung et al., 2007), and Gpd1/Gpd2 (Berbee et al., 1999), respectively. The sequences of RPB2, GPD, and TEF of strain NEAU-5 were submitted to GenBank with accession numbers of MW401634, MW165223, and MW165221, respectively. Phylogenetic trees based on ITS, RPB2, GPD, and TEF were constructed with the neighbour-joining and maximum-likelihood algorithms using MEGA software version 7.0. The results demonstrated that strain NEAU-5 formed a robust clade with A. tenuissima CBS918.96 (supported by 99% and 96% bootstrap values) in the neighbour-joining and maximum-likelihood trees. As mentioned above, strain NEAU-5 produced seldomly branched conidial chains on PCA plates. The pattern is consistent with that of A. tenuissima (Kunze) Wiltshire, but distinct from that of A. alternata which could produce abundant secondary ramification (Simmons 2007). Thus, strain NEAU-5 was identified as A. tenuissima based on its morphology and phylogeny. Pathogenicity tests were carried out by inoculating five unwounded leaves with a conidial suspension of strain NEAU-5 (approximately 106 conidia/ml) on five different healthy plants cultivated in garden, and an equal number of leaves on the same plants inoculated with sterilized ddH2O served as negative controls. Inoculated and control leaves were covered with clear plastic bags for 3 days. After 6 days, small brown and irregular or circular spots were observed on all leaves inoculated with conidial suspension, while no such symptoms were observed in the control. The tests were repeated three times. Furthermore, the pathogenicity tests were also performed using 2-month-old potted plants in a growth chamber (28 oC, 90% relative humidity, 12 h/12 h light/dark) with two repetitions. Five healthy plants were inoculated by spraying 20 ml of a conidial suspension of strain NEAU-5 (approximately 106 conidia/ml) onto unwounded leaves. Five other healthy plants were inoculated with sterilized ddH2O as controls. After 7 days, similar symptoms were observed on leaves inoculated with strain NEAU-5, whereas no symptoms were observed in the control. The pathogen was reisolated from the inoculated leaves and identified as A. tenuissima by morphological and molecular methods. In all pathogenicity tests, A. tenuissima could successfully infect unwounded leaves of O. violaceus, indicating a direct interaction between leaves and A. tenuissima. It is known that high humidity and fairly high temperatures can favor the epidemics of Alternaria leaf spot (Yang et al., 2018), and this may explain why severe leaf spot disease of O. violaceus was observed after prolonged rain. Previously, it has been reported that Alternaria brassicicola and Alternaria japonica could cause leaf blight and spot disease on O. violaceus in Hebei and Jiangsu Provinces, China, respectively (Guo et al., 2019; Sein et al., 2020). Although these pathogens could lead to similar disease symptoms on the leaves of O. violaceus, it is easy to distinguish them by the morphological characteristics of conidiophores and ITS gene sequences. To our knowledge, this is the first report of A. tenuissima causing leaf spot disease of O. violaceus in China.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1207-1207 ◽  
Author(s):  
N. A. Cintas ◽  
C. T. Bull ◽  
S. T. Koike ◽  
H. Bouzar

In 1998, a new disease was detected on 3-week-old commercial broccolini (Brassica oleracea L. var. botrytis × B. alboglabra) transplants in a Salinas Valley, Monterey County, CA greenhouse. Initial symptoms were small (2 to 4 mm diameter) circular to angular, water-soaked spots. As the disease progressed, spots remained relatively small, but turned tan to brown. When diseased tissues were macerated and streaked on King's medium B, a blue-green fluorescent pseudomonad was consistently isolated. Strains were levan positive, oxidase negative, and arginine dihydrolase negative. Strains did not rot potato slices, but induced a hypersensitive reaction on tobacco (Nicotiana tabacum L. ‘Turk’). Fatty acid methyl ester analysis (MIS-TSBA, version 4.10, MIDI Inc., Newark, DE) indicated that strains had a high similarity index (0.82 or higher) to Pseudomonas syringae, and GN (version 3.50, Biolog, Inc., Hayward, CA) profiles also identified strains as P. syringae. The bacterium associated with the disease, therefore, was identified as P. syringae van Hall. Pathogenicity was demonstrated by growing inoculum in nutrient broth shake cultures for 48 h, misting the broth cultures (1×106 CFU/ml) onto broccolini (cv. Aspabrock), and subjecting the plants to 48 h of high humidity. Control plants were misted with sterile nutrient broth. After 4 to 5 days in a greenhouse, leaf spot symptoms developed on all inoculated broccolini plants, and reisolated strains were characterized and found to be P. syringae. Control plants remained symptomless. The results of two sets of pathogenicity tests were the same. Repetitive sequence-based polymerase chain reaction using the BOXA1R primer resulted in identical banding patterns for the broccolini pathogen and for known isolates of P. syringae pv. maculicola from crucifers. In host range testing, P. syringae pv. maculicolawas pathogenic to broccolini plants. The broccolini isolates and P. syringae pv. maculicola isolates had the same pathogenicity results when crucifers and tomatoes were tested as hosts; broccoli and cauliflower (B. oleracea var. botrytis) were infected, and tomato results were variable. These tests suggest that the broccolini pathogen is the bacterial leaf spot pathogen, Pseudomonas syringae pv. maculicola, that occurs on broccoli and cauliflower transplants (1). To our knowledge, this is the first report of this pathogen causing a disease on commercially grown broccolini. Reference: (1) S. T. Koike et al. Plant Dis. 82:727, 1998.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1134-1134 ◽  
Author(s):  
W. P. Wechter ◽  
A. P. Keinath ◽  
J. P. Smith ◽  
M. W. Farnham

Severe outbreaks of leaf spot disease of leafy vegetable brassica crops have occurred from early spring to late fall for at least the past 7 years in Lexington County, South Carolina, the major growing region for leafy greens in the state. Significant economic losses to this disease totaling $1.7 million have been incurred by large and small growers. In 2005, Pseudomonas syringae pv. maculicola was reported as one of the causal organisms of leaf spot disease in South Carolina (2). Investigations during 2006 and 2007 have led to the isolation of another bacterium causing leaf spotting of brassica crops. Symptoms in the field were nearly identical to symptoms caused by P syringae pv. maculicola, i.e., small, brown necrotic spots, often with chlorotic halos that expand and coalesce to cover the leaves. Colonies recovered from diseased tissues were xanthomonad like, nonfluorescent on Pseudomonas Agar F, mucoid on yeast extract dextrose chalk medium, grew at 35°C, hydrolyzed starch, positive for protein digestion, alkaline in litmus milk, and produce acid from arabinose. Sequence data from the 16S rDNA and fatty acid methyl ester analysis gave the best homology to Xanthomonas campestris pv. campestris with a similarity score index of >0.98 and >0.70, respectively, confirming genus and species. Excised-cotyledon assays, used to differentiate between pathovars campestris and armoraciae, confirmed the pathovar as campestris (1). Pathogenicity assays with spray inoculations (1 × 107 CFU/ml) (3) on eight plants each of ‘Topper’ and ‘Alamo’ turnip, ‘Early Jersey Wakefield’ cabbage, and ‘Money maker’ tomato produced leaf-spot symptoms within 10 days in the greenhouse and growth chamber on the turnip and cabbage plants, but not the tomato. X. campestris pv. campestris, which is common throughout the world, also is the causal agent of black rot in brassica. Typical black rot symptoms are seen often in Lexington County fields in summer and are quite different from the leaf spot symptoms observed. Leaf-spotting X. campestris pv. campestris (LS) strains and black rot (BR) strains, recovered from black rot-symptomatic plants lacking leaf spots, from the same fields were compared in greenhouse pathogenicity assays on six plants each of ‘Topper’ turnip and ‘Early Jersey Wakefield’ cabbage. Spray inoculations with 20 individual LS strains and 10 individual BR strains, collected from 2005 to 2007, produced symptoms unique to each group. These symptoms included chlorotic ‘V’-shaped lesions initiating from the leaf margins with black veining when plants were inoculated with BR strains, versus rapid and severe leaf spotting followed by chlorotic ‘V’-shaped lesions typically lacking black-veining 10 to 16 days postinoculation associated with LS strains. Additional inoculation tests gave similar results. To our knowledge, this is the first report of a severe leaf spotting disease of field-grown brassica leafy greens caused by X. campestris pv. campestris in South Carolina. These findings may have importance in differentiation of bacterial leaf spot pathogens in brassica crops. References: (1) A. M. Alvarez et al. Phytopathology 84:1449, 1994. (2) A. P. Keinath et al. Plant Dis. 90:683, 2006. (3) W. P. Wechter et al. Hortic Sci. 42:1140, 2007.


Sign in / Sign up

Export Citation Format

Share Document