scholarly journals Evaluation of Salinity Tolerance of Prairie Junegrass, a Potential Low-maintenance Turfgrass Species

HortScience ◽  
2011 ◽  
Vol 46 (7) ◽  
pp. 1038-1045 ◽  
Author(s):  
Sheng Wang ◽  
Qi Zhang ◽  
Eric Watkins

Prairie junegrass (Koeleria macrantha) is a perennial, cool-season, native grass that has shown potential for use as a turfgrass species in the northern Great Plains; however, limited information is available on its salt tolerance. In this study, salinity tolerance of four junegrass populations from North America (Colorado, Minnesota, Nebraska, and North Dakota) and two improved turf-type cultivars from Europe (‘Barleria’ and ‘Barkoel’) was evaluated and compared with kentucky bluegrass (Poa pratensis), perennial ryegrass (Lolium perenne), sheep fescue (Festuca ovina), hard fescue (F. brevipila), and tall fescue (F. arundinacea). Salinity tolerance was determined based on the predicted salinity level causing 50% reduction of final germination rate (PSLF) and daily germination rate (PSLD) as well as electrolyte leakage (EL), tissue dry weight (DW), and visual quality (VQ) of mature plants. All populations of prairie junegrass showed similar salt tolerance with an average of PSLF and PSLD being 7.1 and 5.3 g·L−1 NaCl, respectively, comparable to kentucky bluegrass and hard and sheep fescue but lower than tall fescue and perennial ryegrass. Larger variations were observed in VQ in the junegrasses compared with EL and DW, in which ‘Barleria’ from the European population showed the highest VQ, following two salt-tolerant grasses, tall fescue and sheep fescue. Nebraska population was the least salt-tolerant within the species but still exhibited similar or higher tolerance than kentucky bluegrass and perennial ryegrass cv. Arctic Green. Overall, junegrass was more salt-sensitive during germination but more tolerant to salinity when mature. Salinity tolerance of junegrass may be further improved through turfgrass breeding because salinity tolerance varied in different populations.

HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1517-1521 ◽  
Author(s):  
Joseph G. Robins ◽  
B. Shaun Bushman ◽  
Blair L. Waldron ◽  
Paul G. Johnson

As competition for water resources in areas of western North America intensify as a result of increasing human populations, the sustainability of turfgrass irrigation with limited water resources is questionable. A potential part of the solution is the use of recycled wastewater for landscape irrigation. However, as a result of high levels of salt, successful irrigation with recycled wastewater will likely need to be coupled with selection for increased salinity tolerance in turfgrass species. Additionally, salinity-tolerant turfgrass will allow production on soils with inherently high salt levels. The study described here characterized the relative salinity tolerance of 93 accessions of Poa germplasm from the USDA National Plant Germplasm System (NPGS). Control cultivars of tall fescue [Lolium arundinaceum (Schreb.) S.J. Darbyshire], perennial ryegrass (Lolium perenne L.), and kentucky bluegrass (Poa pratensis L.) were also evaluated for comparison. Kentucky bluegrass accessions exhibited a wide range of LD50 (salinity dosage necessary to kill 50% of plants) values from 811 ECdays (PI 369296 from Russia) to 1922 ECdays (PI 371768 from the United States). Five kentucky bluegrass accessions exhibited salinity tolerance equal to or better than that of the tall fescue (LD50 = 1815 ECdays) and perennial ryegrass (LD50 = 1754 ECdays) checks. Thus, there is sufficient variation within this species to develop bluegrass with substantially higher salinity tolerance.


1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


2004 ◽  
Vol 44 (3) ◽  
pp. 353 ◽  
Author(s):  
R. S. Tegg ◽  
P. A. Lane

The increased use of semi and fully enclosed sports stadiums necessitates the ongoing selection, development and assessment of shade-tolerance in turfgrass species. Vertical shoot growth rate is a simple biological measure that may supplement visual turfgrass assessment and provide a useful measure of shade adaptation. Cool-season temperate turfgrasses; Kentucky bluegrass–perennial ryegrass (Poa pratensis L.–Lolium perenne L.), creeping bentgrass (Agrostis palustris Huds.), supina bluegrass (Poa supina Schrad.) and tall fescue (Festuca arundinacea Schreb.), and a warm season species, Bermudagrass (Cynodon dactylon L.), were established in pot and field experiments and subjected to 4 shade treatments (0, 26, 56 or 65% shade) under ambient conditions. Average light readings taken near the winter and summer solstice in full sunlight at midday, were 790 and 1980�μmol/m2.s, respectively. Field and pot trials confirmed supina bluegrass and tall fescue to have the greatest shade tolerance, producing high turf quality under 56 and 65% shade. However, all turfgrass species declined in quality under high shade levels as indicated by an increase in thin, succulent vertical growth, and a less-dense turf sward. Vertical shoot growth rates of all species increased linearly with increasing shade levels. Kentucky bluegrass–perennial ryegrass had the highest rate of increase in vertical shoot elongation under shade, approximately 3.5 times greater than supina bluegrass, which had the lowest. Low rates of increase in vertical shoot elongation under shade indicated shade tolerance whereas high rates inferred shade intolerance.


2001 ◽  
Vol 11 (1) ◽  
pp. 152a
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turf-grasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


2002 ◽  
Vol 12 (3) ◽  
pp. 465-469 ◽  
Author(s):  
D.S. Gardner ◽  
J.A. Taylor

In 1992, a cultivar trial was initiated in Columbus, Ohio to evaluate differences in establishment and long-term performance of cultivars of tall fescue (Festuca arundinacea), creeping red fescue (F. rubra), chewings fescue (F. rubra ssp. fallax), hard fescue (F. brevipila), kentucky bluegrass (Poa pratensis), rough bluegrass (P. trivialis), and perennial ryegrass (Lolium perenne) under low maintenance conditions in a shaded environment. Fertilizer and supplemental irrigation were applied until 1994 to establish the grasses, after which no supplemental irrigation, or pesticides were applied and fertilizer rates were reduced to 48.8 kg·ha-1 (1 lb/1000 ft2) of N per year. Percentage cover and overall quality data were collected in 2000 and compared with data collected in 1994. Initial establishment success does not appear to be a good predictor of long-term success of a cultivar in a shaded environment. There was some variability in cultivar performance under shade within a given turfgrass species. The tall fescue cultivars, as a group, had the highest overall quality and percentage cover under shade, followed by the fine fescues, kentucky bluegrass, rough bluegrass, and perennial ryegrass cultivars.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turfgrasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 490D-490 ◽  
Author(s):  
Hoon Kang ◽  
Chiwon W. Lee

The influence of increasing levels (0.0%, 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.2%, 1.6%, and 2.0%) of NaCl on the germination of Kentucky bluegrass (Poa pratensis), annual ryegrass (Lolium multiflorum), perennial ryegrass (Lolium perenne), creeping bentgrass (Agrostis palustris), tall fescue (Festuca arundinacea), and crested wheatgrass (Agropyron cristatum) was investigated. Kentucky bluegrass, creeping bentgrass, and crested wheatgrass had a 50% reduction in germination at 0.2%, 0.6%, and 0.6% NaCl, respectively, compared to the control and completely lost germination at 0.6%, 1.2%, and 1.6% NaCl, respectively. Seed germination in both annual ryegrass and perennial ryegrass was only 50% of the control at 1.2% NaCl and completely inhibited at 2.0% NaCl. Tall fescue, red fescue, and creeping red fescue showed a 50% reduction in germination at NaCl concentrations of 1.2%, 1.2%, and 0.8%, respectively, while showing a complete inhibition of germination at 2.0%, 2.0%, and 1.6% NaCl, respectively.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 414A-414 ◽  
Author(s):  
Saad Alshammary ◽  
Y.L. Qian ◽  
S.J. Wallner

The need for salinity-tolerant turfgrasses is increasing because of increased use of effluent water for turfgrass irrigation. Greenhouse studies were conducted to determine the relative salt tolerance and salt tolerance mechanisms of `Challenger' Kentucky bluegrass (Poa pratensis), `Arid' tall fescue (Festuca arundinacea), `Fults' alkaligrass (Puccinellia distans.), and a saltgrass (Distichlis spicata) collection. Kentucky bluegrass and tall fescue were irrigated with saline solutions at 0.2,1.7, 4.8, or 9.9 dS/m, whereas alkaligrass and saltgrass were irrigated with saline solutions at 0.2, 28.1, 32.8, or 37.5 dS/m prepared using a mixture of NaCl and CaCl2. The salinity levels that caused 50% shoot growth reduction were 9.0, 10.4, 20.0, and 28.5 dS/m for Kentucky bluegrass, tall fescue, saltgrass, and alkaligrass, respectively. Concentrations of proline, a proposed cytoplasmic compatible solute, were 25.8, 30.4, 68.1, and 17.7 μmol/g shoot fw in Kentucky bluegrass, tall Fescue, alkaligrass, and saltgrass, respectively, at the highest salinity level imposed. Bicellular, salt-secreting glands were only observed by scanning electron microscopy on leaves of saltgrass, indicating salt secretion is one of the important salt tolerance mechanisms adopted by saltgrass. Ion contents (Na, Cl, and Ca) in both shoots and roots of all grasses increased with increasing salinity levels. However, alkaligrass maintained a much lower Na, Ca, and Cl contents in roots and shoots than other grasses, suggesting that ion exclusion is one of the major salt tolerance mechanisms in alkaligrass. Tall fescue did not appear to restrict the uptake and translocation of salt in shoot tissues, but maintained a higher K/Na ratio than all other grasses under saline conditions.


HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 824-828 ◽  
Author(s):  
Ian Lane ◽  
Eric Watkins ◽  
Marla Spivak

Lawns represent one of the largest cultivated areas in urban landscapes, and in the Upper Midwest of the United States, lawns are typically composed of a small number of cool-season turfgrass species. There is increased interest in enhancing areas dedicated to lawns using flowering species for conservation purposes—for example, to support pollinators. In this study we used a model flowering forb, Kura clover (Trifolium ambiguum M. Bieb.), because—like many flowering species of conservation interest—it is slow to establish and is sensitive to grass competition. We varied the Kura clover seeding rate into four different turfgrass species treatments: kentucky bluegrass (Poa pratensis L.), hard fescue (Festuca brevipila Tracy), tall fescue [Schedonorus arundinaceum (Schreb.) Darbysh.], and perennial ryegrass (Lolium perenne L.) in two separate trials. Establishment and bloom of Kura clover was significantly greater in trial 1 for kentucky bluegrass and hard fescue than tall fescue and perennial ryegrass. In trial 2, Kura clover established significantly greater in kentucky bluegrass compared with tall fescue and perennial ryegrass, whereas Kura establishment in hard fescue was not significantly different from the other treatments. The seeding rate of Kura clover did not affect establishment in either trial. The results from this study suggest kentucky bluegrass and hard fescue are promising turf companion grasses for future forb/turf interseeding research.


Sign in / Sign up

Export Citation Format

Share Document