scholarly journals Volatile Profile Comparison of USDA Sweet Orange-like Hybrids versus ‘Hamlin’ and ‘Ambersweet’

HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1262-1267 ◽  
Author(s):  
Jinhe Bai ◽  
Elizabeth Baldwin ◽  
Jack Hearn ◽  
Randy Driggers ◽  
Ed Stover

Six ‘Ambersweet’-derived hybrids, similar to sweet orange fruit size, color, and taste and potential as new sweet orange cultivars, were selected to determine their fruit categorization by comparison of their volatile profiles with the parent and ‘Hamlin’, a typical sweet orange. All hybrids are at least ½ sweet orange and varying amounts of mandarin, grapefruit, Poncirus trifoliata, and sour orange in each pedigree. In total, 135 volatiles were detected in the eight hybrid lines/commercial cultivars over two harvests, and 20 compounds were detected in all samples, including terpenes (limonene, β-myrcene, α-pinene, α-terpinene, α-terpineol, and linalool), esters (ethyl butanote, ethyl pentanoate, and ethyl acetate), aldehydes (acetaldehyde, hexanal, and nonanal), and alcohols (ethanol and hexanol). Total abundance of volatiles in January-harvested fruits averaged 30% higher than for fruits of the same trees harvested in November. ‘Ambersweet’ contained the highest total amount of volatiles (mainly as a result of very high levels of monoterpenes), and of them, nootkatone and six other compounds were not detected in any of the hybrids, and some of them were also not detected in ‘Hamlin’. On the other hand, 12 compounds, including pentanal, ethyl 2-butenoate, and ethyl nonanoate, were not detected in ‘Ambersweet’ but were found in ‘Hamlin’ and some of the hybrids. Cluster analysis separated the cultivar/hybrid and harvest time combinations into three clusters. FF-1-76-50, FF-1-76-52 and January FF-1-75-55, all with the same parents (‘Ambersweet’ × FF-1-30-52), were close to FF-1-65-55, but they were separated from ‘Hamlin’ and further separated from ‘Ambersweet’. The cluster containing ‘Hamlin’ has three subclusters: January ‘Hamlin’ and November FF-1-74-14, a hybrid with one-eighth P. trifoliata, which includes a slight off-flavor frequently found in P. trifoliata hybrids, independent of each other, and both were separated from a group of November ‘Hamlin’, FF-1-64-97, and FF-1-75-55. The cluster containing ‘Ambersweet’ included January FF-1-64-97. A principle component analysis (PCA) separated ‘Ambersweet’ from all hybrids and ‘Hamlin’ along the PC1 axis and separated November harvests from January harvests along PC2. This volatile analysis supports the classification of the hybrids as sweet orange.

2004 ◽  
Vol 129 (4) ◽  
pp. 594-598 ◽  
Author(s):  
Graham H. Barry ◽  
William S. Castle ◽  
Frederick S. Davies

Juice quality of `Valencia' sweet orange [Citrus sinensis (L.) Osb.] trees on Carrizo citrange [C. sinensis × Poncirus trifoliata (L.) Raf.] or rough lemon (C. jambhiri Lush.) rootstocks was determined for fruit harvested by canopy quadrant and separated into size categories to ascertain the direct role of rootstock selection on juice soluble solids concentration (SSC) and soluble solids (SS) production per tree of citrus fruit. SS production per fruit and per tree for each size category was calculated. Juice quality was dependent on rootstock selection and fruit size, but independent of canopy quadrant. Fruit from trees on Carrizo citrange had >20% higher SSCs than fruit from trees on rough lemon, even for fruit of the same size. Large fruit accumulated more SS per fruit than smaller fruit, despite lower juice content and SSC. Within rootstocks, SS content per fruit decreased with decreasing fruit size, even though SSC increased. Rootstock effect on juice quality was a direct rather than an indirect one mediated through differences in fruit size. The conventional interpretation of juice quality data that differences in SSC among treatments, e.g., rootstocks or irrigation levels, or fruit size, are due to “dilution” of SS as a result of differences in fruit size and, hence, juice volume, is only partly supported by these data. Rather, accumulation of SS was greater for fruit from trees on Carrizo citrange than rough lemon by 25% to 30%.


HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 33-35 ◽  
Author(s):  
Graham H. Barry ◽  
William S. Castle ◽  
Frederick S. Davies

The objectives of this study were to determine whether juice quality of `Valencia' sweet orange [C. sinensis (L.) Osb.] is affected by the type of inflorescence on which fruit are borne, and to determine the contribution of inflorescence type to within-tree variation in juice quality. During the 1998-99 and 1999-2000 seasons, fruit size and juice quality [soluble solids concentration (SSC) and titratable acidity (TA)] of fruit from `Valencia' sweet orange trees on Carrizo citrange rootstock [Poncirus trifoliata (L.) Raf. × C. sinensis (L.) Osb.] planted in 1987 at Howey-in-the-Hills, Fla., were measured. A 2×2 factorial design (inflorescence type × canopy position) with leafy and leafless inflorescence types, and southwest top and northeast bottom canopy positions was used. The type of inflorescence on which fruit were borne had a minor effect on juice quality, and inflorescence type and juice quality were not directly associated. Rather, juice SSC was associated with the effect of inflorescence type on fruit size, as small fruit tended to have higher SSC than large fruit, regardless of the type of inflorescence on which fruit were borne. The relatively small difference in SSC between fruit borne on leafy and leafless inflorescences (≈3% of mean SSC) was an indirect result of fruit size. Therefore, fruit borne on leafy inflorescences, which tend to be of larger size compared with fruit borne on leafless inflorescences, tended to have marginally lower SSC. Acid content and ratio of SSC: TA were not related to inflorescence type. In addition, the type of inflorescence on which fruit were borne made only a nominal contribution to variability in juice SSC, in contrast to the major contribution of canopy position to within-tree variation in juice SSC. Factors other than inflorescence type are important components of within-tree variation in juice SSC.


2020 ◽  
Vol 5 (1) ◽  
pp. 243-251
Author(s):  
Akira Horibata ◽  
Tsuneo Kato

AbstractA total of 145 accessions of the genus Citrus and related genera, maintained in the Conservation Garden for Citrus Germplasm at the Experimental Farm of Kindai University, Yuasa, Wakayama, Japan, were examined for their phylogenetic relationships. The present classification was conducted using an inter-retrotransposon amplified polymorphism (IRAP) method based on the insertion polymorphism of a retrotransposon, CIRE1, identified in C. sinensis. The objective of this study was to evaluate the applicability of the IRAP method for citrus classification. The constructed dendrogram showed that the 145 accessions and two outgroup species were successfully classified into five major clades. A large number of C. sinensis accessions were divided into three traditional groups, navel orange, sweet orange, and blood orange, almost corresponding to the sub-clades in the dendrogram. Several other accessions belonging to the same species, and also many hybrid cultivars from crossbreeding, were localized into the respective sub-clades or near positions in the dendrogram. Several unclassified accessions could also be located in the dendrogram, suggesting novel relationships with other accessions. It was concluded that the IRAP method based on CIRE1 insertion polymorphism was suitable for the classification of citrus from a molecular point of view.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yue Huang ◽  
Yuantao Xu ◽  
Xiaolin Jiang ◽  
Huiwen Yu ◽  
Huihui Jia ◽  
...  

AbstractGrafting is an ancient technique used for plant propagation and improvement in horticultural crops for at least 1,500 years. Citrus plants, with a seed-to-seed cycle of 5–15 years, are among the fruit crops that were probably domesticated by grafting. Poncirus trifoliata, a widely used citrus rootstock, can promote early flowering, strengthen stress tolerance, and improve fruit quality via scion–rootstock interactions. Here, we report its genome assembly using PacBio sequencing. We obtained a final genome of 303 Mb with a contig N50 size of 1.17 Mb and annotated 25,680 protein-coding genes. DNA methylome and transcriptome analyses indicated that the strong adaptability of P. trifoliata is likely attributable to its special epigenetic modification and expression pattern of resistance-related genes. Heterografting by using sweet orange as scion and P. trifoliata as rootstock and autografting using sweet orange as both scion and rootstock were performed to investigate the genetic effects of the rootstock. Single-base methylome analysis indicated that P. trifoliata as a rootstock caused DNA demethylation and a reduction in 24-nt small RNAs (sRNAs) in scions compared to the level observed with autografting, implying the involvement of sRNA-mediated graft-transmissible epigenetic modifications in citrus grafting. Taken together, the assembled genome for the citrus rootstock and the analysis of graft-induced epigenetic modifications provide global insights into the genetic effects of rootstock–scion interactions and grafting biology.


2005 ◽  
Vol 13 (3) ◽  
pp. 243-246 ◽  
Author(s):  
Fábio Lourenço Romano ◽  
Gláucia Maria Bovi Ambrosano ◽  
Maria Beatriz Borges de Araújo Magnani ◽  
Darcy Flávio Nouer

The coefficient of variation is a dispersion measurement that does not depend on the unit scales, thus allowing the comparison of experimental results involving different variables. Its calculation is crucial for the adhesive experiments performed in laboratories because both precision and reliability can be verified. The aim of this study was to evaluate and to suggest a classification of the coefficient variation (CV) for in vitro experiments on shear and tensile strengths. The experiments were performed in laboratory by fifty international and national studies on adhesion materials. Statistical data allowing the estimation of the coefficient of variation was gathered from each scientific article since none of them had such a measurement previously calculated. Excel worksheet was used for organizing the data while the sample normality was tested by using Shapiro Wilk tests (alpha = 0.05) and the Statistical Analysis System software (SAS). A mean value of 6.11 (SD = 1.83) for the coefficient of variation was found by the data analysis and the data had a normal distribution (p>0.05). A range classification was proposed for the coefficient of variation from such data, that is, it should be considered low for a value lesser than 2.44; intermediate for a value between 2.44 and 7.94, high for a value between 7.94 and 9.78, and finally, very high for a value greater than 9.78. Such classification can be used as a guide for experiments on adhesion materials, thus making the planning easier as well as revealing precision and validity concerning the data.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 865-870 ◽  
Author(s):  
J. W. Hyun ◽  
N. A. Peres ◽  
S.-Y. Yi ◽  
L. W. Timmer ◽  
K. S. Kim ◽  
...  

Two scab pathogens of citrus, Elsinoë fawcettii and E. australis, cause citrus scab and sweet orange scab, respectively, and pathotypes of each species have been described. The two species cannot be readily distinguished by morphological or cultural characteristics and can be distinguished only by host range and the sequence of the internal transcribed spacer (ITS) region. In this study, random amplified polymorphic DNA (RAPD) assays clearly distinguished E. fawcettii and E. australis, and the sweet orange and natsudaidai pathotypes within E. australis also could be differentiated. We developed specific primer sets, Efaw-1 for E. fawcettii; Eaut-1, Eaut-2, Eaut-3, and Eaut-4 for E. australis; and EaNat-1 and EaNat-2 for the natsudaidai pathotype within E. australis using RAPD products unique to each species or pathotype. Other primer sets, Efaw-2 and Eaut-5, which were specific for E. fawcettii and E. australis, respectively, were designed from previously determined ITS sequences. The Efaw-1 and Efaw-2 primer sets successfully identified E. fawcettii isolates from Korea, Australia, and the United States (Florida) and the Eaut-1 to Eaut-5 primer sets identified both the sweet orange pathotype isolates of E. australis from Argentina and the natsudaidai pathotype isolates from Korea. The EaNat-1 and EaNat-2 primer sets were specific for isolates of the natsudaidai pathotype. The Efaw-1 and Efaw-2 primer sets successfully detected E. fawcettii from lesions on diseased leaves and fruit from Korea and primer pairs Eaut-1, Eaut-2, Eaut-3, Eaut-4, and Eaut-5 detected E. australis from lesions on sweet orange fruit from Brazil.


Sign in / Sign up

Export Citation Format

Share Document