scholarly journals Variation in Root Architecture Attributes at the Onset of Storage Root Formation among Resistant and Susceptible Sweetpotato Cultivars Infected with Meloidogyne incognita

HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1924-1929
Author(s):  
Arthur Villordon ◽  
Christopher Clark

In sweetpotato (Ipomoea batatas), the successful emergence and development of lateral roots (LRs), the main determinant of root system architecture (RSA), determines the competency of adventitious roots (ARs) to undergo storage root formation. The present study investigated the effect of three levels of root-knot nematode (RKN) inoculum of race 3 of Meloidogyne incognita on LR length, number, area, and volume in ‘Beauregard’, ‘Evangeline’, and ‘Bayou Belle’, sweetpotato cultivars which are highly susceptible, moderately resistant, and highly resistant, respectively, to M. incognita. The three RKN levels were control (untreated), medium (500 eggs/pot), and high (5000 eggs/pot). In general, the number of galls after 20 days for each cultivar was consistent across RKN levels and two planting dates (PDs). ‘Beauregard’ inoculated with medium and high RKN levels showed 2.9 and 18.9 galls on each AR, respectively. ‘Evangeline’ had 0.5 and 3.4 galls at medium and high RKN levels, respectively. By contrast, ‘Bayou Belle’ showed only 0.9 galls at the high inoculum level. There was a significant PD × cultivar effect and cultivar × RKN level effect for all root attributes. LR attributes varied within and among resistant and susceptible cultivars with a general trend for increase in all root growth attributes in response to RKN infection in the first (PD1) and second PD (PD2). ‘Evangeline’ showed relatively consistent within-cultivar increase across PD1 (medium and high RKN levels) and PD2 (medium RKN level only). LR length, number, area, and volume within ‘Evangeline’ plants subjected to high RKN increased 122%, 126%, 154%, and 136%, respectively, relative to the untreated control plants in PD1. ‘Evangeline’ (PD1 and PD2) and ‘Bayou Belle’ (PD1 only) showed significant increase in all root attributes relative to the susceptible ‘Beauregard’ at medium or high RKN levels. In PD1, LR length, number, area, and volume in ‘Evangeline’ plants subjected to high RKN increased 165%, 167%, 176%, and 190%, respectively, relative to ‘Beauregard’ plants at the same RKN level. These findings are consistent with some data in other systems wherein nematode infection is associated with cultivar-specific root compensatory growth and demonstrate how genotype and environment interact to modify root development responses. These data can be used to further understand the role of cultivar-specific responses to nematode infection and can lead to the consideration of root traits in selection strategies.

2002 ◽  
Vol 127 (2) ◽  
pp. 178-183 ◽  
Author(s):  
Makoto Nakatani ◽  
Masaru Tanaka ◽  
Masaru Yoshinaga

A late-storage root-forming mutant (`KM95-A68') of sweetpotato [Ipomoea batatas (L.) Poir.] was characterized to clarify the genetic and physiological mechanisms of storage root formation. This mutant originated from a somaclonal mutation of `Kokei No. 14'. Storage roots of `KM95-A68' are rare and, when formed, develop 2 or 3 weeks later than those of `Kokei No. 14' from which it originated. Morphological characteristics of the canopy and leaf photosynthetic rates of `KM95-A68' were similar to those of `Kokei No. 14'. No apparent differences were observed in the anatomy of root cross sections of `KM95-A68' and `Kokei No. 14'. An apparent increase in the root zeatin riboside (ZR) levels were observed in `Kokei No. 14' at storage root formation. Root ZR levels differed between `Kokei No. 14' and `KM95-A68'. The onset of increase in root ZR levels was delayed by 2 or 3 weeks in `KM95-A68' in comparison to `Kokei No. 14'. Maximum root ZR levels in `Kokei No. 14' were 2.2 times higher in comparison to `KM95-A68'. This appeared to be a factor in delayed storage root formation of `KM95-A68'. Results of reciprocal grafts of `KM95-A68' and `Kokei No. 14' indicated that the late storage root-forming characteristic of `KM95-A68' is a characteristic that arises from the root itself.


Author(s):  
Yadom Y. F. R. Kouakou ◽  
Kouamé Daniel Kra ◽  
Hortense Atta Diallo

Agricultural activities such as watering crops with nematode-infested water from wells and boreholes, and using infected plant debris as manure or mulch increase root-knot nematode infection. So, this study aims at assessing the influence of the inoculation method and inoculum level of Meloidogyne incognita on the development of root galls on okra plants. Two M. incognita inoculation methods (suspension of individuals and galled root explants) and six inoculum levels (0, 10, 100, 500, 1000 and 2000 second-stage larvae/plant) were studied. The gall index, total numbers and reproductive factor of M. incognita were used to assess the effect of treatments on root gall development. Unlike the reproductive factor, gall index and the total numbers of M. incognita increased with their inoculum level. The pathogenic activities of M. incognita were most significant when crop soils were infested with galled root explants. However, an inverse relationship was found between the inoculum levels of M. incognita and the okra plant’s development. It is reflected by negative correlation coefficients ranging from -0.90 to -0.62. It is therefore important to burn roots infected with root-knot nematodes left in fields so that they do not act as an inoculum for crops.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 868e-869
Author(s):  
J.A. Thies

Thirteen sweetpotato (Ipomoea batatas) genotypes were characterized for resistance to Meloidogyne incognita, M. javanica, M. hapla, and M. arenaria races 1 and 2 in greenhouse tests. The following sweetpotato genotypes representing a range of reactions to M. incognita were evaluated: U.S. Plant Introduction (PI) 399163 (highly resistant = HR), Sumor (HR), Nemagold (HR), Excel (HR), Tinian (HR), Hernandez (resistant = R), Jewel (R), Regal (R), Porto Rico (intermediate = I), Centennial (susceptible = S), Georgia Jet (S), Sulfur (S), and Beauregard (S). Meloidogyne incognita was most pathogenic to sweetpotato of the four Meloidogyne spp. evaluated in these studies. The U.S. Plant Introduction (PI) 399163 and Sumor were resistant to M. incognita in all tests. Only two genotypes, Beauregard and Porto Rico, were susceptible to M. javanica. All genotypes evaluated were resistant to M. hapla, M. arenaria race 1, and M. arenaria race 2. Sumor, U.S. PI 399163, and Nemagold appear to provide the highest levels of resistance against the four Meloidogyne spp. used in these studies. Since M. incognita is the most commonly occurring root-knot nematode species in sweetpotato growing areas of the southern U.S. and is pathogenic to most of the commonly grown sweetpotato cultivars, efforts to develop resistant cultivars that have desirable horticultural characteristics for the U.S. market should be directed toward this root-knot nematode species.


2007 ◽  
Vol 25 (1) ◽  
pp. 73 ◽  
Author(s):  
Sunil K. Singh ◽  
Uma R. Khurma

Six tomato cultivars Moneymaker, Beefsteak, Roma, Summertaste, Mini Roma and Smallfry were tested for their susceptibility to root- knot nematodes at inoculum levels of 200, 400, 600 Juveniles (J2) per pot. All were found to be susceptible to varying degrees as egg masses were present in all with Moneymaker and Roma being the most susceptible and Mini Roma, the least susceptible. The inoculum levels had a significant effect (p<0.05) on the number of galls and plant weights. The gall numbers and plant weights was negatively correlated, with the highest gall numbers and lowest plant weights recorded at the highest inoculum level in all cultivars except in Mini Roma in which there was little variation in gall numbers and plant weights.


Nematology ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 667-676 ◽  
Author(s):  
Aminat Korede Akinsanya ◽  
Steve Olaoluwa Afolami ◽  
Peter Kulakow ◽  
Danny Coyne

Summary Despite being the single largest cassava-producing country, yields in Nigeria remain consistently poor and among the lowest. Regionally, yields are also particularly low across Africa. Pests and pathogens, including plant-parasitic nematodes, play an important role in this current yield deficit. African countries are not only faced with the problem of food security but also that of nutritional deficiency, due to limited micronutrients in the diet. In this study, six biofortified cultivars were evaluated for their response to inoculation with approximately 30 000 root-knot nematode (Meloidogyne incognita) eggs in 30 l pots in Nigeria. All cassava cultivars proved highly susceptible to M. incognita infection after 6 months, with nematode reproduction factor ranging from 7.0 to 44.8. Galling was common on feeder roots and gall index scores were recorded between 4 to 5 (on a scale of 1-5 where 5 ⩽ 100 galls). Meloidogyne incognita infection significantly reduced plant height, stem girth, fresh plant mass, fresh storage root number and storage root weight. Percentage yield loss of between 41.8-88.4% was recorded in M. incognita-infected plants compared with non-infected controls. Although M. incognita reduced storage root weight, it did not necessarily affect the nutritional quality (total carotenoid) or dry weight percentage of the biofortified cassava cultivars. Total carotenoid and dry weight contents of the control cultivar were similar to some of the biofortified cultivars. The high susceptibility of the biofortified cassava cultivars to M. incognita infection indicates that substantial yield losses are likely being experienced by farmers, as this nematode pest is prevalent across sub-Saharan Africa and the tropics.


HortScience ◽  
2002 ◽  
Vol 37 (2) ◽  
pp. 390-392 ◽  
Author(s):  
J.C. Cervantes-Flores ◽  
G.C. Yencho ◽  
E.L. Davis

Five sweetpotato [Ipomoea batatas (L.) Lam.] cultivars (`Beauregard', `Excel', `Jewel', `Hernandez', and `Porto Rico') were evaluated for resistance to three root-knot nematode species: Meloidogyne arenaria (Neal) Chitwood (race 2), M. incognita (Kofoid & White) Chitwood (race 3), and M. javanica (Treub) Chitwood. Resistance screening efficiency was assessed in both 400-cm3 square pots and 150-cm3 Conetainers™. Nematode infection was assessed as the percentage of root system galled, percentage of root system necrosis, and the number of nematode eggs produced per gram of root tissue. Means of these dependent variables were not different (P ≤ 0.05) between container types, with Conetainers™ being more efficient to use. Root necrosis was not related to nematode infection, but was significant among cultivars (P = 0.0005). The resistance responses of the cultivars differed depending on the nematode species. All five cultivars were resistant to M. arenaria race 2. `Hernandez', `Excel', and `Jewel' were also resistant to M. incognita race 3 and M. javanica.


HortScience ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 1903-1911
Author(s):  
Arthur Villordon ◽  
Jeffrey C. Gregorie ◽  
Don LaBonte

The primary objective of this work was to generate species-specific information about root architectural responses to variations in inorganic phosphate (Pi) availability at the onset of storage root formation among six sweetpotato (Ipomoea batatas) cultivars. Three Pi levels were used: 0 (low Pi); 0.17 (medium Pi); and 0.34 (high Pi) g/pot triple super phosphate (0N–46P–0K). The check cultivar ‘Bayou Belle’ (BB) consistently showed evidence of storage root formation at 15 days in adventitious roots (ARs) grown across three Pi levels and two planting dates (PDs). Storage root formation was also detected in ‘Orleans’ (OR) and ‘Beauregard’ (BX), but it was less consistent relative to BB. In general, BB had the lowest adventitious root (AR) number relative to the other cultivars, but the magnitudes of difference varied with Pi availability and PD. With the first PD, BX had a 45% higher AR number compared with BB in low Pi conditions; however, there were no differences in the second PD. Within cultivars, BX and Okinawa grown in low Pi showed combined 17% and 24% reductions in primary root length (PRL) relative to roots grown in high Pi. BB had a higher lateral root number (LRN) and lateral root density (LRD) across Pi levels, corroborating prior data regarding the association of these root architectural attributes with the onset of storage root formation. The experimental data support the hypothesis regarding the existence of genetic variation for Pi efficiency in sweetpotato and that some well-documented Pi-efficient root traits like high LRN and LRD are indirectly selected for in-breeding programs that focus on early storage root formation and stable yields across environments.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Arthur Villordon ◽  
Jeffrey C. Gregorie

The primary objective of this work was to generate species-specific information about root architectural adaptation to variation in boron (B) availability at the onset of storage root formation among three sweetpotato [Ipomoea batatas (L.) Lam] cultivars (Beauregard = BX; Murasaki = MU; Okinawa = OK). Three B levels were used: 0B (B was omitted in the nutrient solution, substrate B = 0.1 mg·kg−1), 1XB (sufficient B; 0.5 mg·kg−1), and 2XB (high B; 1 mg·kg−1). The check cultivar BX showed evidence of storage root formation at 15 days in 0B and 1XB, whereas cultivars MU and OK failed to show evidence of root swelling. The 1XB and 2XB levels were associated with 736% and 2269% increase in leaf tissue B in BX, respectively, relative to plants grown in 0B. Similar magnitudes of increase were observed in MU and OK cultivars. There were no differences in adventitious root (AR) count within cultivars but OK showed 25% fewer AR numbers relative to BX across all B levels. 0B was associated with 20% and 48% reduction in main root length in BX and OK, respectively, relative to plants grown in 1XB and 2XB. 2XB was associated with a 10% increase in main root length in MU relative to plants grown in 0B and 1XB. 0B was associated with reduced lateral root length in all cultivars but the magnitude of responses varied with cultivars. These data corroborate findings in model systems and well-studied crop species that B deficiency is associated with reduced root growth. These data can be used to further understand the role of cultivar-specific responses to variation in B availability in sweetpotato.


Sign in / Sign up

Export Citation Format

Share Document