scholarly journals Foliar Calcium Applications Do Not Improve Quality or Shelf Life of Strawberry, Raspberry, Blackberry, or Blueberry Fruit

HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 382-387 ◽  
Author(s):  
Amanda J. Vance ◽  
Patrick Jones ◽  
Bernadine C. Strik

Foliar calcium (Ca) products are applied by many berry growers to enhance fruit quality and shelf life without evidence that these applications increase fruit Ca or impact fruit characteristics when applied at rates recommended on the product label. The objectives of this study were to determine if fruit or leaf Ca increases when several formulations of liquid Ca products are applied to developing fruit, and to assess any resulting changes in fresh market quality of berries. Products were applied in strawberry (Fragaria ×ananassa L., ‘Hood’ and ‘Albion’), raspberry (Rubus idaeus L., ‘Tulameen’ and ‘Vintage’), blackberry (Rubus L. subgenus Rubus, Watson, ‘Obsidian’ and ‘Triple Crown’), and blueberry (Vaccinium corymbosum L., ‘Spartan’, ‘Liberty’, ‘Draper’, and ‘Legacy’). Calcium formulations tested were Ca chloride (CaCl2), CaCl2 + boron, Ca silicate, Ca chelate, and Ca acetate, which were compared with a water-only control. The rates used for each product were within ranges specified on the label and supplied equal amounts of Ca per ha for each treatment; the Ca concentration varied from 0.05% to 0.3% depending on the cultivar and the volume of water required for good coverage. All products were applied with a backpack sprayer, except in a separate trial where a backpack and electrostatic sprayer were compared in ‘Draper’ and ‘Legacy’. Treatment applications were started at the early green fruit stage and were repeated three or four times, depending on duration of berry development and cultivar. Fruit were harvested into commercial clamshells 4 days to ≈4 weeks after the final application of Ca from an early harvest at commercial ripeness. Data collected included berry weight, rating of fruit appearance and flavor, firmness, skin toughness, total soluble solids (TSS), and weight loss and nesting (collapse of fruit) during storage (evaluated at ≈5-, 10-, 15-, and 20-days postharvest). Fruit and leaves were sampled at harvest to determine Ca concentration. There was no evidence of spotting or off-flavors due to Ca applications. Compared with the control, none of the Ca treatments or method of application changed leaf or fruit Ca concentration, fruit quality, firmness, or shelf life in any crop or cultivar tested.

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 245
Author(s):  
Yixin Cai ◽  
Fumiomi Takeda ◽  
Brian Foote ◽  
Lisa Wasko DeVetter

Machine harvesting blueberry (Vaccinium sp.) alleviates labor costs and shortages but can reduce fruit quality. Installation of softer catching surfaces inside modified over-the-row harvesters (modified OTR) and adjusting harvest intervals may improve fruit quality and packout. The objective of this study was to determine the effect of harvest interval on fruit quality of fresh market northern highbush blueberry (Vaccinium corymbosum L.) harvested using a modified OTR. ‘Liberty’ blueberry bushes were harvested by hand or using a modified OTR at 3-, 10-, and 14-day intervals in 2019 and at 7-, 11-, and 14-day intervals in 2020. Hand-harvested ‘Liberty’ had greater packout and firmness than machine-harvested fruit. Machine harvesting at the 3-day interval in 2019, and the 14-day interval in 2020 reduced packout from 70–80% to 60% and 54%, respectively. In 2019, machine harvesting at a 3-day interval overall resulted in fruit with greater firmness, higher titratable acidity (TA), and lower total soluble solids (TSS) and SS/TA, compared to other harvest intervals. In 2020, the 7-day machine-harvest interval had a greater TA and lower TSS/TA, compared to the 11- and 14-day intervals. Overall, modified OTR machine-harvest intervals can be extended to 10–11 days for fresh market northern highbush cultivars such as ‘Liberty’ grown in northwest Washington.


2019 ◽  
Vol 29 (3) ◽  
pp. 314-319 ◽  
Author(s):  
Jaysankar De ◽  
Aswathy Sreedharan ◽  
You Li ◽  
Alan Gutierrez ◽  
Jeffrey K. Brecht ◽  
...  

Cooling procedures used by blueberry (Vaccinium sp.) growers often may include delays up to 24 hours that can damage the fruit through rough handling and adverse temperatures, thereby potentially compromising quality and, subsequently, safety. The objectives of this experiment were to compare forced-air cooling (FAC) compared to hydrocooling without sanitizer (HW) and hydrocooling with sanitizer (HS) regarding the quality and shelf life of southern highbush blueberry [SHB (Vaccinium corymbosum)] and to determine the efficacy of these treatments for reducing Salmonella in SHB. Freshly harvested SHB that were inoculated with a five-serovar cocktail of rifampin-resistant Salmonella were rapidly chilled by FAC or hydrocooling (HW and HS) using a laboratory model system. FAC did not show any significant reduction (P > 0.05) in Salmonella or in the effects on the microbiological quality of blueberries. HW and HS reduced Salmonella by ≈2 and >4 log cfu/g SHB, respectively, on day 0. These postharvest treatments were also evaluated for their ability to help maintain fruit quality throughout a storage period of 21 days at 1 °C. Hydrocooling (both HS and HW) provided more rapid cooling than FAC. Hydrocooled blueberries showed significant weight gain (P < 0.05), whereas FAC resulted in a slight, but insignificant (P > 0.05), reduction in final weight. The results of hydrocooling, both HS and HW, shown in this study could help to extend the shelf life while maintaining or increasing the microbiological quality of fresh market blueberries. Information obtained by this study can be used for developing the best temperature management practices to maintain the postharvest safety and quality of blueberries.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1411 ◽  
Author(s):  
Shuaimeng Zhu ◽  
Yinli Liang ◽  
Lan Mu ◽  
Xiaojuan An ◽  
Hongfei Yin

Selenium (Se) deficiency in humans could be improved by biofortification of food with selenium, 1-Methylcyclopropene (1-MCP) treatment is beneficial for the non-sulfur storage of fresh fruit. This study investigated fruit quality of table grape (Hutai No.8) with foliar Se fertilizer at maturity, and fruit quality changes of table grape during shelf life stages that caused by postharvest 1-MCP treatment in 2016 and 2017. The results showed that foliar Se fertilizer application significantly increased Se content in grape berries at maturity, and the raised rate were 43.09% and 33.24% compared to that of control in 2016 and 2017 respectively, meanwhile it increased the nutritional components in grape berries, including soluble proteins, soluble sugars, Vitamin C, total soluble solids, proanthocyanidin content and so on, and decreased the titratable acidity content. During shelf life stages, 1-MCP application decreased the decay number of grapes, and SE + 1-MCP treatment had the most excellent fruit quality among all treatments in two consecutive vintages. In conclusion, Se fertilizer application could increase Se content in grape berries, also improved the fruit nutritional and health care values at maturity. 1-MCP application could delay the process of ripening and senescence for Se-enriched grape and maintaining the postharvest quality of table grape during shelf life stages, it allows us to market the fruit at a more advanced ripening stage without quality loss.


2018 ◽  
Vol 28 (6) ◽  
pp. 836-842
Author(s):  
Amanda J. Vance ◽  
Bernadine C. Strik

Fresh market blueberry (Vaccinium sp.) sales require high-quality, firm fruit with no significant defects. A new phospholipid biofilm product was developed to reduce splitting and increase firmness when applied directly to blueberry fruit. Two trials were undertaken to test the effects of the biofilm using various application timings and methods. In highbush blueberry cultivar Elliott (Vaccinium corymbosum), four treatments included: 1) rate and timing on the current product label (5- to 10-mm berry size, 10% to 20% color change, and between the first and second harvests), 2) addition of a preharvest timing (5- to 10-mm berry size, 10% to 20% color change, and 7 to 10 days preharvest); 3) starting applications later (10% to 20% color change, 7 to 10 days preharvest, and between the first and second harvests), and 4) a water-sprayed control. Biofilm was applied at a rate of 2 qt/acre for all applications. In highbush blueberry cultivar Legacy (Vaccinium corymbosum × Vaccinium sp.), the same volume of biofilm was applied via an airblast sprayer or through an overhead sprinkler system typically used for chemigation and compared with a water-sprayed control. Data collected included yield (in ‘Elliott’), berry weight, firmness, skin toughness, total soluble solids (TSS), weight loss during storage, percent splitting (in ‘Legacy’), and a visual rating, evaluated on the day of harvest and about 14 and 28 days postharvest. There were no visual defects caused by application of biofilm. Compared with the controls in either study, biofilm had no consistent impact on fruit quality, firmness, shelf life, yield in ‘Elliott’, or splitting in ‘Legacy’.


Author(s):  
Md. Tariqul Islam ◽  
Md. Shazadur Rahman ◽  
Mst. Moli Akter ◽  
Md. Nazmul Hasan ◽  
Md. Sorof Uddin

Fruits are susceptible to insect pest infestations, bird attack, various pathogens, and mechanical damages, all of which can reduce their commercial value and thereby cause significant yield and economic losses. The objective of this study was to control mango pests and diseases as well as to improve the fruit quality of mango through bagging technology. An investigation was performed during the year 2016 from March to July for safe mango production by applying minimum use of pesticide entitled studies on influence of bagging on physico-chemical properties and shelf life of mango cv. Langra. The mango fruits were bagged at marble stage (40 days from fruit set) with different types of bags which constituted the various treatments viz: T1: Brown paper bag; T2: White paper bag; T3: Polythene bag T4: Muslin cloth bag; T5: No bagging (control). Bagging with brown paper bag and white paper bag improved fruit retention, weight of fruit, diameter of fruit, pulp weight, total soluble solids, ascorbic acid, percent of citric acid, reducing sugars and β-carotene at harvest and ripe stage over control. Brown paper bag changed fruit color. In all cases good quality, cleaner, disease and insect free fruits were harvested. The sensory qualities in fruits of brown, white and muslin cloth bags were improved over control. Pre-harvest bagging also reduced occurrence of spongy tissue and the incidence of mealy bugs. These results indicate that fruit bagging can improve fruit quality through reduction in disease and insect-pest attack and shelf life of mango cv. Langra.


2013 ◽  
Vol 23 (4) ◽  
pp. 430-436 ◽  
Author(s):  
Fumiomi Takeda ◽  
Gerard Krewer ◽  
Changying Li ◽  
Daniel MacLean ◽  
James W. Olmstead

Northern highbush (NH) blueberry (Vaccinium corymbosum) and southern highbush (SH) blueberry (V. corymbosum hybrids) have fruit that vary in firmness. The SH fruit is mostly hand harvested for the fresh market. Hand harvesting is labor-intensive requiring more than 500 hours/acre. Rabbiteye blueberry (V. virgatum) tends to have firmer fruit skin than that of NH blueberry and has been mostly machine harvested for the processing industry. Sparkleberry (V. arboreum) has very firm fruit. With the challenges of labor availability, efforts are under way to produce more marketable fruit using machine harvesting. This could require changing the design of harvesting machine and plant architecture, and the development of cultivars with fruit that will bruise less after impact with hard surfaces of machines. The objectives of this study were to determine the fruit quality of machine-harvested SH blueberry, analyze the effect of drop height and padding the contact surface on fruit quality, investigate the effect of crown restriction on ground loss, and determine the effect of plant size on machine harvestability. The fruit of ‘Farthing’, ‘Scintilla’, ‘Sweetcrisp’, and several selections were either hand harvested or machine harvested and assessed during postharvest storage for bruise damage and softening. Machine harvesting contributed to bruise damage in the fruit and softening in storage. The fruit of firm-textured SH blueberry (‘Farthing’, ‘Sweetcrisp’, and selection FL 05-528) was firmer than that of ‘Scintilla’ after 1 week in cold storage. Fruit drop tests from a height of 20 and 40 inches on a plastic surface showed that ‘Scintilla’ was more susceptible to bruising than that of firm-textured ‘Farthing’ and ‘Sweetcrisp’. When the contact surface was cushioned with a foam sheet, bruise incidence was significantly reduced in all SH blueberry used in the study. Also, the fruit dropped 40 inches developed more bruise damage than those dropped 20 inches. Ground loss during machine harvesting was reduced from 24% to 17% by modifying the rabbiteye blueberry plant architecture. Further modifications to harvesting machines and plant architecture are necessary to improve the quality of machine-harvested SH and rabbiteye blueberry fruit and the overall efficiency of blueberry (Vaccinium species and hybrids) harvesting machines.


HortScience ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1618-1624 ◽  
Author(s):  
Desire Djidonou ◽  
Amarat H. Simonne ◽  
Karen E. Koch ◽  
Jeffrey K. Brecht ◽  
Xin Zhao

In this study, the effects of grafting with interspecific hybrid rootstocks on field-grown tomato fruit quality were evaluated over a 2-year period. Fruit quality attributes from determinate ‘Florida 47’ tomato plants grafted onto either ‘Beaufort’ or ‘Multifort’ rootstocks were compared with those from non- and self-grafted controls. Grafted plants had higher fruit yields than non- and self-grafted plants, and increased production of marketable fruit by ≈41%. The increased yield was accompanied by few major differences in nutritional quality attributes measured for these fruit. Although grafting with the interspecific rootstocks led to consistently small, but significant increases of fruit moisture (≈0.6%), flavor attributes such as total titratable acidity (TTA) and the ratio of soluble solids content (SSC) to TTA were not significantly altered. Among the antioxidants evaluated, ascorbic acid concentration was reduced by 22% in fruit from grafted plants, but significant effects were not evident for either total phenolics or antioxidant capacity as assayed by oxygen radical absorbance capacity (ORAC). Levels of carotenoids (lycopene, β-carotene, and lutein) were similar in fruit from grafted plants with hybrid rootstocks compared with non- and self-grafted controls. Overall, the seasonal differences outweighed the grafting effects on fruit quality attributes. This study showed that grafting with interspecific hybrid rootstocks could be an effective horticultural technique for enhancing fruit yield of tomato plants. Despite the modest reduction in ascorbic acid content associated with the use of these rootstocks, grafting did not cause major negative impacts on fruit composition or nutritional quality of fresh-market tomatoes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Magda M. Khattab ◽  
Hamed H. Hamed ◽  
Nahla A. Awad ◽  
Hossam A. ElKorashy

Mango fruits being climacteric have a short shelf life; and post-harvest dipping is considered as one of the most popular techniques to prolong its shelf life dipping based on starch, olive oil, beeswax and sodium benzoate have been evaluated with reference to the shelf life and quality of mango Naomi cultivar fruit harvested at full stage of maturity. The dipped and undipped (control) fruits were stored on the lab’s tables in the room conditions (25±5 <C and 65-70% R.H.), samples of each treatment were randomly taken every 4 days to evaluate after harvest dipping treatments effect during shelf life of fruits. Results indicated that every dipping treatment has a significant impact on the quality and shelf life of the fruit. The beeswax and olive oil treated mango fruits had the longest shelf life with good quality, while the shelf life of untreated (control) fruit was the shortest. The total soluble solids and sugar contents were also high in starch-treated fruit. The overall data conclude that beeswax was the best post-harvest dipping material, which might be due to the fact that beeswax is an antioxidant and antimicrobial as well as hydrophobic in nature.


2021 ◽  
Vol 10 (7) ◽  
pp. e11810716287
Author(s):  
Ivan Marcos Rangel Junior ◽  
Deniete Soares Magalhães ◽  
Filipe Almendagna Rodrigues ◽  
Moacir Pasqual ◽  
Leila Aparecida Salles Pio

The objective of this study was to evaluate the quality of white-fleshed dragon fruit (Hylocereus undatus) at harvest and postharvest to determine fruit quality and the feasibility of harvesting the fruits at different outer fruit color stages. The treatments consisted of four peel color stages – S1 (<25% red peel), S2 (25%-49% red peel), S3 (50% to 75% red peel) and S4 (>75% red peel) – and two evaluation times (at harvest and one day after full red peel color), which corresponded to 1, 3, 5 and 7 days after harvest for the S4, S3, S2 and S1 color stages, respectively. The total, peel and pulp weights, pulp yield, peel thickness, pulp firmness, pH, total soluble solids and peel, scale and pulp colors were evaluated. The peel and scale colors are reliable indicators of fruit quality. It is possible to extend the postharvest shelf life of the fruits by harvesting at the S1 stage, but this negatively affects yield and final quality; the fruits are smaller and less sweet, making harvesting unfeasible at this timepoint. Despite the higher yield and quality of fruits harvested at a more advanced ripeness stage (S4), the postharvest shelf life is considerably reduced. Thus, fruits at stages S2 or S3 should be harvested to obtain higher yield and quality.


Author(s):  
João M. de S. Miranda ◽  
Ítalo H. L. Cavalcante ◽  
Inez V. de M. Oliveira ◽  
Paulo R. C. Lopes ◽  
Joston S. de Assis

ABSTRACTThe production of high quality fruits is a necessary factor for the adaptation and production of plant species with economic viability. Thus, an experiment was conducted from July 2012 to January 2013 to evaluate the fruit quality of the ‘Eva’ and ‘Princesa’ apple cultivars as a function of nitrogen fertilization in Petrolina, PE, Brazil. The experimental design consisted of randomized blocks, with treatments distributed in a factorial arrangement 2 x 4, corresponding to apple cultivars (Eva and Princesa) and nitrogen doses (40; 80; 120 and 160 kg of N ha-1), with four replications and three plants in each plot. The fruit characteristics, such as fruit mass, skin color (luminosity, chromaticity, and colour angle), size (width and length), pulp firmness, titratable acidity (TA), soluble solids (SS) and the SS/TA ratio, were recorded. Nitrogen doses do not affect fruit quality of studied apple cultivars. The fruit quality attributes are different between apple cultivars: fruit firmness, SS/TA ratio, fruit mass and fruit diameter are superior for Princesa cultivar, while the fruit length for Eva cultivar is superior.


Sign in / Sign up

Export Citation Format

Share Document