scholarly journals Acetaldehyde and Ethanol Metabolism during Conditioning and Air Storage of ‘Honeycrisp’ Apples

HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1347-1351 ◽  
Author(s):  
Yosef Al Shoffe ◽  
Abdul Sattar Shah ◽  
Jacqueline F. Nock ◽  
Christopher B. Watkins

‘Honeycrisp’ apples are susceptible to the physiological disorder soft scald, especially when stored at temperatures close to 0 °C. The disorder can be reduced by a conditioning treatment of 10 °C for 7 days before storage, but little is known about the underlying physiology of disorder development. The effects of storing ‘Honeycrisp’ apples in air at 0.5 °C for a total of 140 days, without and with conditioning, on internal ethylene concentration (IEC), ethanol and acetaldehyde concentrations, and activities of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) were investigated in relation to soft scald incidence. Fruit were selected on the basis of background color (chlorophyll concentration) using a nondestructive delta absorbance (DA) meter to minimize variability of fruit maturation. Conditioning reduced soft scald incidence to 1% compared with 28% in unconditioned fruit. During the conditioning period, IECs were usually greatest in the conditioned fruit, with no effect on ethanol and acetaldehyde concentrations. During subsequent storage, IEC was greatest in conditioned fruit, whereas ethanol and acetaldehyde concentrations were generally less. However, ADH and PDC activities were unaffected consistently by conditioning or during storage.

HortScience ◽  
2019 ◽  
Vol 54 (9) ◽  
pp. 1532-1539 ◽  
Author(s):  
Corina Serban ◽  
Lee Kalcsits ◽  
Jennifer DeEll ◽  
James P. Mattheis

‘Honeycrisp’ apples are susceptible to bitter pit, a physiological disorder that impacts peel and adjacent cortex tissue. ‘Honeycrisp’ is also susceptible to chilling injury (CI) that can be prevented by holding fruit at 10 to 20 °C after harvest for up to 7 days. This temperature conditioning period reduces CI risk but can enhance bitter pit development. Previous research demonstrated a controlled atmosphere (CA) established during conditioning can reduce ‘Honeycrisp’ bitter pit development without inducing other physiological disorders. The objective of this research was to evaluate the duration of CA needed to reduce bitter pit development. Experiments were conducted in 2014, 2016, and 2017 with fruit obtained from commercial orchards in Washington State and, in 2017 only, Ontario, Canada. Half the fruit were treated with 42 µmol·L−1 1-methycyclopropene (1-MCP) for 24 hours at 10 °C immediately following harvest. The untreated fruit were held at the same temperature (10 °C) in a different cold room. Following 1-MCP treatment, all fruit were conditioned at 10 °C for an additional 6 days, then fruit was cooled to 2.8 °C. During conditioning, fruit were held in air or CA (2.5 kPa O2, 0.5 kPa CO2) established 1 day after harvest, for 1 to 8 weeks, then in air. All fruit were removed from cold storage after 4 months and then held 7 days at 20 °C. Fruit from most orchards/years stored in CA developed less bitter pit compared with fruit stored continuously in air. CA during conditioning also reduced poststorage peel greasiness but CA for 2 weeks or longer enhanced cortex cavity development in some orchard lots. Treatment with 1-MCP did not reduce bitter pit but enhanced development of peel leather blotch and core browning for some orchards/years. 1-MCP–treated fruit slowed the loss of soluble solids content, titratable acidity, and reduced internal ethylene concentration. Results suggest the potential for postharvest management of bitter pit development in ‘Honeycrisp’ apples by CA established during conditioning with minimal development of other postharvest disorders.


2018 ◽  
Vol 28 (4) ◽  
pp. 481-484 ◽  
Author(s):  
Yosef Al Shoffe ◽  
Christopher B. Watkins

Initial short-term storage is a treatment where fruit are cooled to 33 °F for a specific time period and then moved to 38 °F until the end of storage. Its effects on the development of physiological disorders in ‘Honeycrisp’ apples (Malus domestica) were investigated for two seasons. During the first season, fruit were harvested from two orchards and stored at 33 and 38 °F, with and without 1 week of conditioning at 50 °F, or stored for 4 weeks at 33 °F followed by 4 weeks at 38 °F. All fruit were stored for a total of 8 weeks. In the second season, fruit were harvested from one orchard and stored at 38 °F either with or without 1 week of conditioning at 50 °F, or stored for 1 week at 33 °F and moved to 38 °F for 15 weeks followed by 7 d at 68 °F. Short-term storage (1 to 4 weeks) at 33 °F decreased bitter pit for all orchards in the two seasons, except in comparison with the continuous 33 °F storage in the first season; soft scald was also reduced in the first season compared with continuous storage at 33 °F, with higher incidence of soft scald in orchard one compared with orchard two. Initial short-term storage at 33 °F resulted in lower soggy breakdown incidence compared with storage at 33 °F with 1 week of conditioning at 50 °F for fruit from orchard two in the first season, the only year when low-temperature injuries were observed. In conclusion, initial short-term storage at 33 °F followed by storage at 38 °F maintained the highest percentage of healthy fruit in the two seasons.


HortScience ◽  
2012 ◽  
Vol 47 (7) ◽  
pp. 886-892 ◽  
Author(s):  
Christopher B. Watkins ◽  
Jacqueline F. Nock

‘Honeycrisp’ is an apple [Malus xsylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] that can be stored in air for several months, but the flavor becomes bland with prolonged storage. Controlled-atmosphere (CA) storage recommendations have not been made in some growing regions, however, because of the susceptibility of fruit to physiological disorders. In the first year of this study, we stored fruit from six orchards in O2 partial pressures (pO2) of 1.5, 3.0, and 4.5 kPa with 1.5 and 3.0 kPa pCO2. In the second year, we stored fruit from three orchards in three storage regimes (2.0/2.0, 3.0/1.5, 3.0/0.5 kPa O2/kPa CO2) with and without treatment of fruit with 1-methylcyclopropene (1-MCP) at the beginning and end of the conditioning regime (10 °C for 7 days) that is commercially used for ‘Honeycrisp’. CA storage had little effect on flesh firmness, soluble solids concentration (SSC), and titratable acidity (TA) over the range of pO2 and pCO2 tested. Greasiness was generally lower in fruit stored in lower pO2 and higher pCO2. Susceptibility of fruit to core browning and senescent breakdown varied between years, but a high incidence of internal CO2 injury in fruit from some orchards occurred in both years. 1-MCP treatment decreased internal ethylene concentration (IEC) and sometimes maintained TA but had little effect on firmness and SSC. Senescent breakdown and core browning incidence were reduced by 1-MCP treatment where orchard susceptibility to these disorders was high. However, 1-MCP treatment sometimes increased internal CO2 injury, especially if treatment occurred at the beginning of the conditioning period. CA storage cannot be recommended for storage of New York-grown ‘Honeycrisp’ apples until management of CO2 injury can be assured.


2004 ◽  
Vol 32 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Christopher B Watkins ◽  
Jacqueline F Nock ◽  
Sarah A Weis ◽  
Sastry Jayanty ◽  
Randolph M Beaudry

2020 ◽  
Vol 160 ◽  
pp. 111044 ◽  
Author(s):  
Yosef Al Shoffe ◽  
Jacqueline F. Nock ◽  
Tara Auxt Baugher ◽  
Richard P. Marini ◽  
Christopher B. Watkins

2015 ◽  
Vol 25 (3) ◽  
pp. 385-391 ◽  
Author(s):  
Alan R. Biggs ◽  
Gregory M. Peck

Three separate experiments were conducted to test standard calcium chloride salt (CaCl2) rates and several new formulations of calcium (Ca) for amelioration of bitter pit, a Ca-related physiological disorder that affects fruit of many apple (Malus ×domestica) cultivars, including the popular cultivar Honeycrisp. Even small amounts of bitter pit damage make apples unmarketable. We evaluated various formulations of Ca to compare their effectiveness in controlling bitter pit, including proprietary Ca products (InCa™, Sysstem-Cal™, Vigor-Cal™, XD10, and XD505) with and without antitranspirant. Calcium chloride is the most common Ca product used to reduce bitter pit incidence, but it has negative impacts, such as phytotoxicity and corrosiveness. Of the products that were tested in 2011, XD10 at the high rate and XD505 are candidates for future study. In 2012, both the CaCl2 and XD10 treatments had lower bitter pit severity than the nontreated control, but only the CaCl2 treatments had a lower total percentage of fruit with bitter pit compared with the control. The antitranspirant reduced bitter pit incidence in one of three treatments. Full season Ca treatments and higher rates (up to 23.5 lb/acre per season of elemental Ca) are needed to significantly reduce bitter pit incidence in ‘Honeycrisp’ apples in the mid-Atlantic United States.


2017 ◽  
Vol 142 (6) ◽  
pp. 464-469
Author(s):  
Yin Xu ◽  
Yizhou Ma ◽  
Nicholas P. Howard ◽  
Changbin Chen ◽  
Cindy B.S. Tong ◽  
...  

Soft scald is an apple (Malus ×domestica Borkh.) fruit disorder that appears in response to cold storage after about 2–8 weeks. It appears as a ribbon of dark tissue on the peel of the fruit, with occasional browning into the flesh. Several apple cultivars are susceptible to it, including Honeycrisp. The objectives of this study were to examine the cellular microstructure of fruit exhibiting soft scald and determine if any aspect of the peel microstructure at harvest could be indicative of future soft scald incidence. Light and electron microscopy were used to examine the peel microstructure of ‘Honeycrisp’ fruit that were unaffected or affected by soft scald. Tissue with soft scald had brown pigmented epidermal and hypodermal cells, whereas unaffected fruit peel epidermal cells were unpigmented. Cuticular wax of unaffected peel had upright wax platelets or clumps of wax, but peel surfaces with soft scald exhibited flattened granules and were more fragile than that of unaffected fruit. Epidermal cells of fruit with soft scald were more disorganized than that of unaffected fruit. Light microscopy was used to examine peels of ‘Honeycrisp’ fruit from four growing locations and fruit from a ‘Honeycrisp’ breeding population at harvest. ‘Honeycrisp’ and ‘Honeycrisp’ progeny fruit were also stored at 0 °C for 8 weeks and scored for soft scald incidence. Cross-sections of unaffected peel of stored ‘Honeycrisp’ fruit looked similar to that of freshly harvested fruit. No significant correlations were found between soft scald incidence and measured microstructural attributes of ‘Honeycrisp’ fruit at harvest, suggesting that peel microstructure cannot be used to predict possible soft scald incidence after storage.


HortScience ◽  
2017 ◽  
Vol 52 (1) ◽  
pp. 132-137 ◽  
Author(s):  
James P. Mattheis ◽  
David R. Rudell ◽  
Ines Hanrahan

‘Honeycrisp’ apples are susceptible to develop the physiological disorder bitter pit. This disorder typically develops during storage, but preharvest lesion can also develop. ‘Honeycrisp’ is also chilling sensitive, and fruit is typically held at 10–20 °C after harvest for up to 7 days to reduce development of chilling injury (CI) during subsequent cold storage. This temperature conditioning period followed by a lower storage temperature (2–4 °C) reduces CI risk but can exacerbate bitter pit development. Bitter pit development can be impacted in other apple cultivars by the use of controlled atmosphere (CA) storage and/or 1-methylcyclopropene (1-MCP). Studies were conducted to evaluate efficacy of CA and/or 1-MCP to manage ‘Honeycrisp’ bitter pit development. Apples from multiple lots, obtained at commercial harvest, were held at 10 °C for 7 days and then cooled to 3 °C. Half the fruit was exposed to 42 μmol·L−1 1-MCP the day of receipt while held at 10 °C. Fruit were stored in air or CA (3 kPa O2, 0.5 kPa CO2 for 2 days, then 1.5 kPa O2, 0.5 kPa CO2) established after 1 day at 10 °C or after 7 days at 10 °C plus 2 days at 3 °C. Fruit treated with 1-MCP and/or stored in CA developed less bitter pit compared with untreated fruit stored in air, and bitter pit incidence was lowest for 1-MCP-treated fruit with CA established during conditioning. Development of diffuse flesh browning (DFB) and cavities, reported to occur during ‘Honeycrisp’ CA storage, was observed in some lots. Incidence of these disorders was not enhanced by establishing CA 2 days compared with 9 days after harvest. 1-MCP and CA slowed peel color change, loss of soluble solids content (SSC) and titratable acidity (TA), and reduced ethylene production and respiration rate. The results indicate potential for the postharvest management of bitter pit development in ‘Honeycrisp’ apple through use of 1-MCP and/or CA storage.


Sign in / Sign up

Export Citation Format

Share Document