scholarly journals Kinematic and Kinetic Analysis of Horticultural Activities for Postural Control and Balance Training

HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1541-1552
Author(s):  
A-Young Lee ◽  
Sin-Ae Park ◽  
Young-Jin Moon ◽  
Ki-Cheol Son

The objective of this study was to analyze the kinematic and kinetic characteristics of eight horticultural activities (HAs): digging, raking, sowing seeds, transplanting plants, near-distance weeding, far-distance weeding, low-height harvesting, and high-height harvesting. Twenty-four male university students (average age, 23.4 ± 2.9 years) participated in this study. Balance and postural stability factors [e.g., center of mass (CoM), ground reaction force (GRF), and center of pressure (CoP)] and postural control strategy factors (e.g., joint angles, joint moment, and muscle activation of the trunk and lower limbs) were assessed using a three-dimensional (3D) motion analysis system, force platform, and surface electromyography. A total of eight HAs were distinguished in three motions: stepping, squatting, and stooping. In performing the eight HAs, CoM shifting occurred and balance of the subjects became unstable. These forced compensatory motor strategies to maintain balance by exertion of GRF from the two feet, movement of the CoP, and a combination of musculoskeletal system exercises of the lower limbs and trunk occurred. The kinematic and kinetic characteristics of lower limb motions were significantly different across the HAs (P = 0.05). The kinematic and kinetic characteristics of HAs were similar to those of the functional tasks during balance improvement training motions and activities of daily living. The current study provides useful reference data for developing a horticultural therapy program for balance improvement in patients who need physical rehabilitation.

2016 ◽  
Vol 16 (07) ◽  
pp. 1630003 ◽  
Author(s):  
MD. AKHTARUZZAMAN ◽  
AMIR AKRAMIN SHAFIE ◽  
MD. RAISUDDIN KHAN

Human gait is the identity of a person's style and quality of life. Reliable cognition of gait properties over time, continuous monitoring, accuracy of evaluation, and proper analysis of human gait characteristics have demonstrated their importance not only in clinical and medical studies, but also in the field of sports, rehabilitation, training, and robotics research. Focusing on walking gait, this study presents an overview on gait mechanisms, common technologies used in gait analysis, and importance of this particular field of research. Firstly, available technologies that involved in gait analysis are briefly introduced in this paper by concentrating on the usability and limitations of the systems. Secondly, key gait parameters and motion characteristics are elucidated from four angles of views; one: gait phases and gait properties; two: center of mass and center of pressure (CoM-CoP) tracking profile; three: Ground Reaction Force (GRF) and impact, and four: muscle activation. Thirdly, the study focuses on the clinical observations of gait patterns in diagnosing gait abnormalities of impaired patients. The presentation also shows the importance of gait analysis in sports to improve performance as well as to avoid risk of injuries of sports personnel. Significance of gait analysis in robotic research is also illustrated in this part where the study focuses on robot assisted systems and its possible applicability in clinical rehabilitation and sports training.


Author(s):  
Chang B. Joo ◽  
Joo H. Kim

A biped mechanism can maintain its balance by redirecting the ground reaction force direction and changing the center of pressure location. In this paper, how the variable inertia in a multibody dynamic model is related to those efforts is investigated and fall initiation criteria in three dimensional space, a balanced state manifold is constructed by using a 3D multi-segmental model. The balanced state domain is constructed by iteratively solving nonlinear constrained optimization problems and finding the velocity extrema at given center of mass positions subjected to certain balancing conditions. The constructed balanced state domain of a multi-segmental model can be used as fall initiation criteria in 3D space and it demonstrates the better balancing maintenance capability of 3D multi-segmental model than the 3D linear inverted pendulum mode.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6277
Author(s):  
Myunghyun Lee ◽  
Sukyung Park

Kinetics data such as ground reaction forces (GRFs) are commonly used as indicators for rehabilitation and sports performance; however, they are difficult to measure with convenient wearable devices. Therefore, researchers have attempted to estimate accurately unmeasured kinetics data with artificial neural networks (ANNs). Because the inputs to an ANN affect its performance, they must be carefully selected. The GRF and center of pressure (CoP) have a mechanical relationship with the center of mass (CoM) in the three dimensions (3D). This biomechanical characteristic can be used to establish an appropriate input and structure of an ANN. In this study, an ANN for estimating gait kinetics with a single inertial measurement unit (IMU) was designed; the kinematics of the IMU placed on the sacrum as a proxy for the CoM kinematics were applied based on the 3D spring mechanics. The walking data from 17 participants walking at various speeds were used to train and validate the ANN. The estimated 3D GRF, CoP trajectory, and joint torques of the lower limbs were reasonably accurate, with normalized root-mean-square errors (NRMSEs) of 6.7% to 15.6%, 8.2% to 20.0%, and 11.4% to 24.1%, respectively. This result implies that the biomechanical characteristics can be used to estimate the complete three-dimensional gait data with an ANN model and a single IMU.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1450
Author(s):  
Alfredo Ciniglio ◽  
Annamaria Guiotto ◽  
Fabiola Spolaor ◽  
Zimi Sawacha

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


Author(s):  
María del Mar Moreno-Muñoz ◽  
Fidel Hita-Contreras ◽  
María Dolores Estudillo-Martínez ◽  
Agustín Aibar-Almazán ◽  
Yolanda Castellote-Caballero ◽  
...  

Background: Abdominal Hypopressive Training (AHT) provides postural improvement, and enhances deep trunk muscle activation. However, until recently, there was a lack of scientific literature supporting these statements. The major purpose of this study was to investigate the effect of AHT on posture control and deep trunk muscle function. Methods: 125 female participants aged 18–60 were randomly allocated to the Experimental Group (EG), consisting of two sessions of 30 min per week for 8 weeks of AHT, or the Control Group (CG), who did not receive any treatment. Postural control was measured with a stabilometric platform to assess the static balance and the activation of deep trunk muscles (specifically the Transverse Abdominal muscle (TrA)), which was measured by real-time ultrasound imaging. Results: The groups were homogeneous at baseline. Statistical differences were identified between both groups after intervention in the Surface of the Center of Pressure (CoP) Open-Eyes (S-OE) (p = 0.001, Cohen’s d = 0.60) and the Velocity of CoP under both conditions; Open-Eyes (V-OE) (p = 0.001, Cohen´s d = 0.63) and Close-Eyes (V-CE) (p = 0.016, Cohen´s d = 0.016), with the EG achieving substantial improvements. Likewise, there were statistically significant differences between measurements over time for the EG on S-OE (p < 0.001, Cohen´s d = 0.99); V-OE (p = 0.038, Cohen´s d = 0.27); V-CE (p = 0.006, Cohen´s d = 0.39), anteroposterior movements of CoP with Open-Eyes (RMSY-OE) (p = 0.038, Cohen´s d = 0.60) and activity of TrA under contraction conditions (p < 0.001, Cohen´s d = 0.53). Conclusions: The application of eight weeks of AHT leads to positive outcomes in posture control, as well as an improvement in the deep trunk muscle contraction in the female population.


2001 ◽  
Vol 90 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Guido Baroni ◽  
Alessandra Pedrocchi ◽  
Giancarlo Ferrigno ◽  
Jean Massion ◽  
Antonio Pedotti

The adaptation of dynamic movement-posture coordination during forward trunk bending was investigated in long-term weightlessness. Three-dimensional movement analysis was carried out in two astronauts during a 4-mo microgravity exposure. The principal component analysis was applied to joint-angle kinematics for the assessment of angular synergies. The anteroposterior center of mass (CM) displacement accompanying trunk flexion was also quantified. The results reveal that subjects kept typically terrestrial strategies of movement-posture coordination. The temporary disruption of joint-angular synergies observed at subjects' first in-flight session was promptly recovered when repetitive sessions in flight were analyzed. The CM anteroposterior shift was consistently <3–4 cm, suggesting that subjects could dynamically control the CM position throughout the whole flight. This is in contrast to the observed profound microgravity-induced disruption of the quasi-static body orientation and initial CM positioning. Although this study was based on only two subjects, evidence is provided that static and dynamic postural control might be under two separate mechanisms, adapting with their specific time course to the constraints of microgravity.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fabian Horst ◽  
Djordje Slijepcevic ◽  
Marvin Simak ◽  
Wolfgang I. Schöllhorn

AbstractThe Gutenberg Gait Database comprises data of 350 healthy individuals recorded in our laboratory over the past seven years. The database contains ground reaction force (GRF) and center of pressure (COP) data of two consecutive steps measured - by two force plates embedded in the ground - during level overground walking at self-selected walking speed. The database includes participants of varying ages, from 11 to 64 years. For each participant, up to eight gait analysis sessions were recorded, with each session comprising at least eight gait trials. The database provides unprocessed (raw) and processed (ready-to-use) data, including three-dimensional GRF and two-dimensional COP signals during the stance phase. These data records offer new possibilities for future studies on human gait, e.g., the application as a reference set for the analysis of pathological gait patterns, or for automatic classification using machine learning. In the future, the database will be expanded continuously to obtain an even larger and well-balanced database with respect to age, sex, and other gait-specific factors.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242215
Author(s):  
A. M. van Leeuwen ◽  
J. H. van Dieën ◽  
A. Daffertshofer ◽  
S. M. Bruijn

Step-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.


2021 ◽  
Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract BackgroundDue to disrupted motor and proprioceptive function lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in case of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on non-amputated and amputated side during slow walking.MethodsFourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases with non-amputated or amputated side.ResultsWhen outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly higher displacement of center of mass. ConclusionsResults of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response. To improve their balancing responses to unexpected balance perturbation people fitted with passive transtibial prostheses should undergo perturbation-based balance training during clinical rehabilitation.


2020 ◽  
Author(s):  
Zahra Rahmati ◽  
Saeed Behzadipour ◽  
Alfred C. Schouten ◽  
Ghorban Taghizadeh ◽  
Keikhosrow Firoozbakhsh

Abstract Background: Balance training improves postural control in Parkinson’s disease (PD). However, a systematic approach for the development of individualized, optimal training programs is still lacking, as the learning dynamics of the postural control in PD, over a training program are poorly understood. Objectives: We investigated the learning dynamics of the postural control in PD, during a balance-training program, in terms of the clinical, posturographic, and novel model-based measures. Methods: Twenty patients with PD participated in a balance-training program, 3 days a week, for 6 weeks. Clinical tests assessed functional balance and mobility pre-training, mid-training, and post-training. Center-of-pressure (COP) was recorded at four time-points during the training (pre-, week 2, week 4, and post-training). COP was used to calculate the sway measures and to identify the parameters of a patient-specific postural control model, at each time-point. The posturographic and model-based measures constituted the two sets of stability- and flexibility-related measures. Results: Mobility- and flexibility-related measures showed a continuous improvement during the balance-training program. In particular, mobility improved at mid-training and continued to improve to the end of the training, whereas flexibility-related measures reached significance only at the end. The progression in the balance- and stability-related measures was characterized by early improvements over the first three to four weeks of training, and reached a plateau for the rest of the training. Conclusions: The progression in balance and postural stability is achieved earlier and susceptible to plateau out, while mobility and flexibility continues to improve during the balance training.


Sign in / Sign up

Export Citation Format

Share Document