scholarly journals Different Microgreen Genotypes Have Unique Growth and Yield Responses to Intensity of Supplemental PAR from Light-emitting Diodes during Winter Greenhouse Production in Southern Ontario, Canada

HortScience ◽  
2020 ◽  
Vol 55 (2) ◽  
pp. 156-163 ◽  
Author(s):  
Chase Jones-Baumgardt ◽  
David Llewellyn ◽  
Youbin Zheng

Low natural daily light integrals (DLIs) are a major limiting factor for greenhouse production during darker months (e.g., October to February in Canada). Supplemental lighting (SL) is commonly used to maintain crop productivity and quality during these periods, particularly when the supply chain demands consistent production levels year-round. What remains to be determined are the optimum SL light intensities (LIs) for winter production of a myriad of different commodities. The present study investigated the growth and yield of sunflower (Helianthus annuus L., ‘Black oil’), kale (Brassica napus L., ‘Red Russian’), arugula (Eruca sativa L.), and mustard (Brassica juncea L., ‘Ruby Streaks’), grown as microgreens, in a greenhouse under SL light-emitting diode (LED) photosynthetic photon flux density (PPFD) levels ranging from 17.0 to 304 μmol·m−2·s−1 with a 16-hour photoperiod (i.e., supplemental DLIs from 1.0 to 17.5 mol·m−2·d−1). Crops were sown in a commercial greenhouse near Hamilton, ON, Canada (lat. 43°14′N, long. 80°07′W) on 1 Feb. 2018, and harvested after 8, 11, 12, and 12 days, resulting in average natural DLIs of 6.5, 5.9, 6.2, and 6.2 mol·m−2·d−1 for sunflower, kale, arugula, and mustard, respectively. Corresponding total light integrals (TLIs) ranged from 60 to 188 mol·m−2 for sunflower, 76 to 258 mol·m−2 for kale, 86 to 280 mol·m−2 for arugula, and 86 to 284 mol·m−2 for mustard. Fresh weight (i.e., marketable yield) increased asymptotically with increasing LI and leaf area increased linearly with increasing LI, in all genotypes. Hypocotyl length of mustard decreased and hypocotyl diameter of sunflower, arugula, and mustard increased with increasing LI. Dry weight, robust index, and relative chlorophyll content increased and specific leaf area decreased in kale, arugula, and mustard with increasing LI. Commercial microgreen greenhouse growers can use the light response models described herein to predict relevant production metrics according to the available (natural and supplemental) light levels to select the most appropriate SL LI to achieve the desired production goals as economically as possible.

Author(s):  
Aistė Bagdonavičienė ◽  
Aušra Brazaitytė ◽  
Julė Jankauskienė ◽  
Pavelas Duchovskis

The objective of our studies was to evaluate the assimilative indices of cucumber (‘Pasalimo F1’) and tomato (‘Marissa F1’) transplants, cultivated under various photosynthetic photon flux densities (PPFD) were provided by light-emitting diodes (LEDs). Experiment was performed in phytotron complex of Institute of Horticulture, LRCAF. A system of high-power, solid-state lighting modules with 92 % 638 nm (red) + 665 nm (red) + 731 nm (far red) and 8 % 447 nm (blue) was used in the experiments. The generated PPFD of each type of five solid-state modules was ~200 and ~400 μmol m-2 s-1. Our experiment revealed that increased net assimilation rate (NAR) depended on increased PPFD of cucumber and tomato hybrid. 400 μmol m-2 s-1 LED illumination had positive effect on relative growth rate (RGR). Cucumbers which were grown under 200 μmol m-2 s-1 had bigger leaf area ratio (LAR) and specific leaf area (SLA), their development has been bigger as compared to higher 400 μmol m-2 s-1 PPFD. High PPFD LED illumination had positive effect on leaf weight ratio (LWR), shoot root ratio (SRR) and tomato transplants development. These studies with various photosynthetic photon flux densities (PPFD) and LEDs light should be continued throughout plant vegetation.


Author(s):  
Chase Jones-Baumgardt ◽  
Qinglu Ying ◽  
Youbin Zheng ◽  
Gale G. Bozzo

Sole-source light-emitting diodes (LEDs) are alternatives to fluorescent tubes and high intensity discharge lamps that are routinely used for indoor cultivation of horticultural commodities, including microgreens. This study examined the effect of photosynthetic photon flux density (PPFD) from LEDs on phytochemical profiles in organically grown kale, cabbage, arugula, and mustard microgreens, and their association with growth and morphological attributes. LEDs were used to deliver a 15% blue light and 85% red light mixture to microgreens at varying PPFDs between 100 and 600 μmol m-2 s-1. For all microgreens, increased concentrations of ascorbate (total and reduced) and total anthocyanin were proportional to PPFD. Total phenolic concentrations were elevated in all four microgreens at high PPFDs, whereas chlorophyll concentrations declined in arugula cabbage and mustard. A principal component analysis revealed anthocyanins and phenolics were associated with ascorbate levels in all microgreens, but not with chlorophylls or carotenoids. At high PPFDs photosynthetic pigment levels were negatively associated with fresh and dry weight to varying degrees. Anthocyanins, phenolics and ascorbate were negatively correlated with hypocotyl length and the colour attribute hue angle in all microgreens. These results indicate that microgreen growth and morphology are associated with altered phytochemical profiles during cultivation under sole source LEDs.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1996
Author(s):  
Yali Li ◽  
Jie Xiao ◽  
Jiangtao Hu ◽  
Byoung Ryong Jeong

The optimal photoperiod and light quality for runner induction in strawberries ‘Sulhyang’ and ‘Maehyang’ were investigated. Two experiments were carried out in a semi-closed walk-in growth chamber with 25/15 °C day/night temperatures and a light intensity of 250 μmol·m–2·s–1photosynthetic photon flux density (PPFD) provided from white light-emitting diodes (LEDs). In the first experiment, plants were treated with a photoperiod of either 12, 14, 16, 18, 20, or 22 h In the second experiment, a total of 4 h of night interruption (NI) light at an intensity of 70 μmol·m–2·s–1PPFD provided from either red, blue, green, white, or far-red LED in addition to 11 h short day (SD). The results showed that both ‘Sulhyang’ and ‘Maehyang’ produced runners when a photoperiod was longer than 16 h, and the number of runners induced positively correlated with the length of photoperiod. However, the plant growth, contents of chlorophyll, sugar and starch, and Fv/Fo decreased in a 22 h photoperiod. All qualities of the NI light, especially red light, significantly increased the number of runners and daughter plants induced per plant as compared with those in the SD treatment in both cultivars. In a conclusion, a photoperiod between 16 and 20 h and NI light, especially red NI light, can be used for quality runner induction in both ‘Sulhyang’ and ‘Maehyang’.


1988 ◽  
Vol 39 (5) ◽  
pp. 863 ◽  
Author(s):  
M Zeroni ◽  
J Gale

Rose plants (Rosa hybrida cv. Sonia, Syn. Sweet Promise) were placed in growth chambers under conditions resembling winter in a controlled environment greenhouse in the desert: mild temperatures, high incident photosynthetic photon flux density (PPFD), high air humidity and 10.5 h daylenght. Concentrations of CO2 in the air were maintained throughout the day at 320, 600 or 1200 8l l-1 with approximately 350 8l l-1 at night. Plant growth (length, fresh and gry weight), development (breaks, blindness), flower yield and flower quality (flower bud diameter, fresh weight and cane length) indices were monitored throughout three consecutive flowering cycles. CO2 supplementation caused an increase in leaf resistance to water vapour diffusion, accompanied by a reduction in the rate of transpiration per unit leaf area, Total leaf area increased at higher CO2 concentrations. Water use per plant did not change. Plant water potentials increased with rising CO2 concentrations. Growth, development, flower yield and flower quality were greatly enahnced in the CO2-enriched atmosphere. The response of growth and development to CO2 supplementation tended to decrease slightly with time when calculated per branch, but increased when calculated per plant. Flower yield and qualtiy did not change with time. The highest CO2 treatment resulted in a sustained, approximately 50% increase in yield, and doubling of the above quality indices throughout the three growth cycles.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 870 ◽  
Author(s):  
Filippos Bantis ◽  
Athanasios Koukounaras ◽  
Anastasios S. Siomos ◽  
Kalliopi Radoglou ◽  
Christodoulos Dangitsis

Watermelon is cultivated worldwide and is mainly grafted onto interspecific squash rootstocks. Light-emitting diodes (LEDs) can be implemented as light sources during indoor production of both species and their spectral quality is of great importance. The objective of the present study was to determine the optimal emission of LEDs with wide wavelength for the production of watermelon and interspecific squash seedlings in a growth chamber. Conditions were set at 22/20 °C temperature (day/night), 16 h photoperiod, and 85 ± 5 μmol m−2 s−1 photosynthetic photon flux density. Illumination was provided by fluorescent (FL, T0) lamps or four LEDs (T1, T2, T3, and T4) emitting varying wide spectra. Watermelon seedlings had greater shoot length, stem diameter, cotyledon area, shoot dry weight-to-length (DW/L) ratio, and Dickson’s quality index (DQI) under T1 and T3, while leaf area and shoot dry weight (DW) had higher values under T1. Interspecific squash seedlings had greater stem diameter, and shoot and root DW under T1 and T3, while leaf and cotyledon areas were favored under T1. In both species, T0 showed inferior development. It could be concluded that a light source with high red emission, relatively low blue emission, and a red:far-red ratio of about 3 units seems ideal for the production of high-quality watermelon (scion) and interspecific squash (rootstock) seedlings.


An automated procedure is described that allows the rate of photosynthesis, as a function of photon flux density (PFD), to be determined and plotted within 30 minutes. The method is based on polarographic measurement of O 2 evolution from a piece of leaf enclosed in a chamber and illuminated from above by an array of light-emitting diodes. The light emitted from these diodes is altered by a computer which also facilitates analyses of the data so derived. Applications of the procedure to leaves of shade and sun plants, to studies of photoinhibition and to analysis of the Kok effect, are described.


2008 ◽  
Vol 3 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Anželika Kurilčik ◽  
Renata Miklušytė-Čanova ◽  
Stasė Dapkūnienė ◽  
Silva Žilinskaitė ◽  
Genadij Kurilčik ◽  
...  

AbstractEffects of illumination spectrum on the morphogenesis of chrysanthemum plantlets (Chrysanthemum morifolium Ramat. ‘Ellen’) grown in vitro were studied using an illumination system consisting of four groups of light-emitting diodes (LEDs) in the following spectral regions: blue (450nm), red (640nm), red (660nm), and far-red (735nm). Taking into account all differences in shoot height, root length, and fresh and dry weight (FW and DW, respectively), observed while changing the total photon flux density (PFD), the optimal total PFD for growth of chrysanthemum plantlets in vitro was estimated. For 16 h photoperiod and typical fractions of the spectral components (14%, 50%, 28%, and 8%, respectively), the optimal total PFD was found to be 40 µmol m−2 s−1. Our study shows that the blue component in the illumination spectrum inhibits the plantlet extension and formation of roots and simultaneously increases the DW to FW ratio and content of photosynthetic pigments. We demonstrate photomorphogenetic effects in the blue region and its interaction with the fractional PFD of the far-red spectral component. Under constant fractional PFD of the blue component, the root number, length of roots and stems, and fresh weight of the plantlets have a correlated nonmonotonous dependence on the fractional PFD of the far-red component.


HortScience ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 497-503 ◽  
Author(s):  
Joshua R. Gerovac ◽  
Joshua K. Craver ◽  
Jennifer K. Boldt ◽  
Roberto G. Lopez

Multilayer vertical production systems using sole-source (SS) lighting can be used for the production of microgreens; however, traditional SS lighting methods can consume large amounts of electrical energy. Light-emitting diodes (LEDs) offer many advantages over conventional light sources, including high photoelectric conversion efficiencies, narrowband spectral light quality (LQ), low thermal output, and adjustable light intensities (LIs). The objective of this study was to quantify the effects of SS LEDs of different light qualities and intensities on growth, morphology, and nutrient content of Brassica microgreens. Purple kohlrabi (Brassica oleracea L. var. gongylodes L.), mizuna (Brassica rapa L. var. japonica), and mustard [Brassica juncea (L.) Czern. ‘Garnet Giant’] were grown in hydroponic tray systems placed on multilayer shelves in a walk-in growth chamber. A daily light integral (DLI) of 6, 12, or 18 mol·m−2·d−1 was achieved from commercially available SS LED arrays with light ratios (%) of red:green:blue 74:18:8 (R74:G18:B8), red:blue 87:13 (R87:B13), or red:far-red:blue 84:7:9 (R84:FR7:B9) with a total photon flux (TPF) from 400 to 800 nm of 105, 210, or 315 µmol·m−2·s−1 for 16 hours. Regardless of LQ, as the LI increased from 105 to 315 µmol·m−2·s−1, hypocotyl length (HL) decreased and percent dry weight (DW) increased for kohlrabi, mizuna, and mustard microgreens. With increasing LI, leaf area (LA) of kohlrabi generally decreased and relative chlorophyll content (RCC) increased. In addition, nutrient content increased under low LIs regardless of LQ. The results from this study can help growers to select LIs and LQs from commercially available SS LEDs to achieve preferred growth characteristics of Brassica microgreens.


HortScience ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 95-99 ◽  
Author(s):  
Dave Llewellyn ◽  
Katherine Schiestel ◽  
Youbin Zheng

A greenhouse study was undertaken to investigate whether light-emitting diode (LED) technology can be used to replace high-pressure sodium (HPS) lighting for cut gerbera production during Canada’s traditional supplemental lighting (SL) season (November to March). The study was carried out at the University of Guelph’s research greenhouse, using concurrent replications of SL treatments within the same growing environment. LED (85% red, 15% blue) and HPS treatment plots were set up to provide equal amounts of supplemental photosynthetically active radiation (PAR) at bench level. This setup was used to assess the production of three cultivars of cut gerbera (Gerbera jamesonii H. Bolus ex Hook.f): Acapulco, Heatwave, and Terra Saffier. There were no treatment differences in SL intensity, with average SL photosynthetic photon flux density (PPFD) and daily light integral (DLI) of 55.9 µmol·m−2·s−1 and 2.3 mol·m−2·d−1, respectively. Flowers harvested from the LED treatment had a 1.9% larger flower diameter in ‘Acapulco’; 4.2% shorter and 3.8% longer stems in ‘Heatwave’ and ‘Terra Saffier’, respectively; and 7.7% and 8.6% higher fresh weights for ‘Acapulco’ and ‘Terra Saffier’, respectively, compared with flowers harvested from the HPS treatment. There were no differences in accumulated total or marketable flower harvests for any of the cultivars. The vase life of ‘Acapulco’ flowers grown under the LED treatment was 2.7 d longer than those grown under the HPS treatment, but there were no SL treatment effects on water uptake for any of the cultivars during the vase life trials. There were no SL treatment effects on specific leaf area for any of the cultivars. There were only minimal treatment differences in leaf, soil, and air temperatures. Cut gerbera crops grown with under LED SL had equivalent or better production and crop quality metrics compared with crops grown under HPS SL.


Sign in / Sign up

Export Citation Format

Share Document