scholarly journals Penn State High Tunnel Extension Program

2002 ◽  
Vol 12 (4) ◽  
pp. 732-735 ◽  
Author(s):  
William J. Lamont ◽  
Michael D. Orzolek ◽  
E. Jay Holcomb ◽  
Robert M. Crassweller ◽  
Kathy Demchak ◽  
...  

The Center for Plasticulture's High Tunnel Research and Education Facility was established at Pennsylvania State University in 1999. Since its inception, applied research has been conducted at this facility by a team of researchers and extension specialists on the development of a new high tunnel design. The development of crop production recommendations for vegetables, small fruits, tree fruits and cut flowers grown in high tunnels has been a priority. To complement the applied research program, an aggressive extension education program was developed to extend information on the technology of high tunnels to county extension personnel, growers, industry representatives, students, master gardeners and the general public. The extension programming effort consisting of demonstration high tunnels, field days, tours, in-service training, publications and presentations made at winter meetings will be discussed in the report below.

2002 ◽  
Vol 12 (3) ◽  
pp. 447-453 ◽  
Author(s):  
William J. Lamont ◽  
Martin R. McGann ◽  
Michael D. Orzolek ◽  
Nymbura Mbugua ◽  
Bruce Dye ◽  
...  

Plasticulture technology, especially high tunnels for extending the production period of a wide variety of horticultural crops, is an accepted production practice worldwide. In particular, high tunnels offer a production system that minimizes the effect of the environment on crop production and allows growers to continue to farm in densely populated areas. Only recently has the use of high tunnels in the U.S. been investigated and this research has been centered in the northeastern U.S. In 1999 the High Tunnel Research and Education Facility was established at Pennsylvania State University that resulted in the development of a unique high tunnel design. A detailed description of the new design and construction is presented in this report.


2009 ◽  
Vol 19 (1) ◽  
pp. 56-60 ◽  
Author(s):  
H. Chris Wien

High tunnels are well suited for use in the production of floral crops, especially cut flowers. Through the increases in temperature afforded at both ends of the growing season, high tunnels allow earlier and later harvests than are possible in the field. During summer, rain protection and a relatively calm environment provides an ideal growing environment to cut flower crops. In U.S. Department of Agriculture (USDA) Hardiness Zones 3 through 5, the higher temperatures of a high tunnel permit culture of warm-season crops like celosia (Celosia argentea) during summer. Cut flower production allows intensive production on a small land area and provides a high level of income. For these reasons, high tunnels have become a standard part of cut flower growers' farms. Most commonly, they are single-bay structures with roll-up sides, but use of multi-bay complexes is becoming more popular for larger-scale growers. In USDA Hardiness Zones of 7 and higher, high tunnels are shaded in summer to lower interior temperatures and enhance production of shade-tolerant species. Overall, techniques of moderating temperature extremes with shading and ventilation, or use of low tunnels inside to increase minimum temperatures are important options for cut flower production. In the presentation, comparisons will be made in growth and earliness of production and yield for several cut flower species grown in the field and an adjacent high tunnel.


2018 ◽  
Vol 47 (3) ◽  
pp. 452-476 ◽  
Author(s):  
Shuay-Tsyr Ho ◽  
Jennifer E. Ifft ◽  
Bradley J. Rickard ◽  
Calum G. Turvey

Fruit producers in the Eastern United States face a wide range of weather-related risks that have the capacity to largely impact yields and profitability. This research examines the economic implications associated with responding to these risks for sweet cherry production in three different systems: high tunnels, revenue insurance, and weather insurance. The analysis considers a distribution of revenue flows and costs using detailed price, yield, and weather data between 1984 and 2013. Our results show that the high tunnel system generates the largest net return if significant price premiums exist for earlier and larger fruit.


2010 ◽  
Vol 20 (3) ◽  
pp. 639-645 ◽  
Author(s):  
Sharon J.B. Knewtson ◽  
Edward E. Carey ◽  
M.B. Kirkham

A survey was conducted of 81 growers managing 185 high tunnels in Missouri, Kansas, Nebraska, and Iowa to collect information about their high tunnel management practices. The survey was administered from 2005 to 2007 using internet-based and written forms. The average respondent had 4 years of high tunnel experience. The oldest tunnel still in use was 15 years old. Twenty-five percent of respondents grew crops in their high tunnels year-round. Tomato (Solanum lycopersicum), lettuce (Lactuca sativa), spinach (Spinacia oleracea), cucumber (Cucumis sativus), pepper (Capsicum spp.), leafy greens, and flowers were the most common crops. Organic soil amendments were used exclusively by 35% of growers, and in combination with conventional fertilizers by an additional 50% of growers. The summary of management practices is of interest to growers and the industries and university research and extension scientists who serve them. Growers typically reported satisfaction with their high tunnels. Growers with more than one high tunnel had often added tunnels following the success of crop production in an initial tunnel. Labor for crop maintenance was the main limiting factor reported by growers as preventing expanded high tunnel production.


2019 ◽  
Vol 29 (4) ◽  
pp. 461-467
Author(s):  
Karen L. Panter ◽  
Timmothy M. Gergeni ◽  
Casey P. Seals ◽  
Andrea R. Garfinkel

High tunnels are gaining popularity for their use in horticultural crop production. However, little is known about the effect of high tunnel orientation on plant growth and development. In this set of studies, we show tunnel orientation does not necessarily affect the production of cut sunflower (Helianthus annuus) and culinary herbs oregano (Origanum vulgare), marjoram (Origanum majorana), and garlic chive (Allium tuberosum). Two high tunnels, one with the long axis oriented north-south (NS) and the other east-west (EW), were used to test the effects of high tunnel orientation on several crops over a 5-year period: cut sunflower (2012 and 2016); marjoram, oregano, and garlic chive (2013 and 2014); and garlic chive (2015). The tunnels are 12 × 16 ft, smaller than those used in commercial production. The size would be appropriate for hobby and seasonal production of horticultural crops for local markets. Cut sunflower stems were similar lengths both years in both high tunnels. Sunflower times to harvest were different between cultivars but not between high tunnels. Oregano fresh weight yields were highest in the NS tunnel in 2013 but similar between tunnels in 2014. Marjoram fresh weights were highest in 2013 in the EW tunnel but highest in 2014 in the NS tunnel. Garlic chive fresh weights were similar between tunnels all 3 years. We show that differences are more a function of innate cultivar characteristics than which way small high tunnels are oriented.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 750B-750
Author(s):  
Lewis Jett* ◽  
Edward Carey ◽  
Laurie Hodges

There is great interest by horticulture producers in the Central Great Plains in methods to extend the traditional growing season, increase value of crops and provide more locally grown produce. High tunnels are low-cost, unheated greenhouses that can accomplish these goals. In 2002, the Central Great Plains High Tunnel Project was initiated through funding support by the Initiative for Future Agriculture and Food Systems (IFAFS). The Univ. of Missouri, Kansas State Univ., and the Univ. of Nebraska have constructed 24 high tunnels to conduct research on vegetables, small fruits and cut flowers. Each year, a multi-state workshop is conducted along with several on-farm and research center tours. Growers are collaborating with extension personnel on projects ranging from high tunnel temperature management to pest management. A web site for high tunnel information has been constructed (www.hightunnels.org). Production guides on specific high tunnel crops have been printed. From 2002-03, a significant number of high tunnels have been constructed in the Central Great Plains.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1067D-1067
Author(s):  
H. Chris Wien

Flowering plants grown and marketed locally as cut flowers have become economically important in recent years, concentrating on species that are too delicate to ship long distances. Although the bulk of this production is done outdoors, extending the season at both ends by using high tunnels (unheated greenhouse structures covered with a single layer of polyethylene), has become popular. To determine the advantages and drawbacks of using high tunnels as season extension structures for cut flowers, variety trials of seven and four flower species were conducted in 2004 and 2005, respectively, both in a high tunnel and in an adjacent field. In the cool, rainy 2004 season, plants in the tunnel were ready for harvest 20 days sooner than the same varieties outside. Outside plants had 25% more stems than tunnel-grown plants, but there was no difference in average stem length. In the dry, warm season of 2005, tunnel-grown plants were 8 days earlier, and had 58% more stems, which were increased in length by 16% over field-grown plants. Lisianthus (Eustoma grandiflorum) and snapdragons (Antirrhinum) were grown in both seasons, and gave similar results both times. Tunnel-grown lisianthus showed a 34% increase in stems per plant, and an 8% increase in stem length, and the stems could be harvested 8 days earlier. Snapdragons were 9 days earlier in the tunnel both years, but tunnel-grown plants produced 22% fewer stems. Disease and insect pressures occurred in both locations, but pest species causing problems differed. With careful choice of species to be grown in tunnels, cut flower production in this environment can be optimized.


2009 ◽  
Vol 19 (1) ◽  
pp. 25-29 ◽  
Author(s):  
William J. Lamont

High tunnels have been used for many years worldwide, but in the United States, the utilization of high tunnel technology for the production of horticultural crops is a relatively recent phenomenon. Single and multibay high tunnels are used throughout the world to extend the production season. One big advantage of high tunnels in the temperate and tropical regions of the world is the exclusion of rain, thus reducing the amount of disease pressure and crop loss while improving crop quality and shelf life. In temperate regions of the world, high tunnels are used to increase temperatures for crop production in spring, fall, and sometimes winter seasons. The use of high tunnels in their many forms continues to increase worldwide, and many different kinds of vegetables, small fruit, tree fruit, and flowers are being cultivated. One impediment in determining high tunnel usage worldwide is the failure of many authors and agricultural census takers to distinguish between high tunnels and plastic-covered greenhouses. In many instances, they are presented together under the heading “protected cultivation.”


2014 ◽  
Vol 24 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Emmanuel Alves Dos Santos Hecher ◽  
Constance L. Falk ◽  
Juliette Enfield ◽  
Steven J. Guldan ◽  
Mark E. Uchanski

Relatively little season extension research has been conducted in the southwestern United States, particularly with low-cost high tunnels or hoop houses for small-scale farmers. In this study, the economics of winter production of two leafy crops [lettuce (Lactuca sativa) and spinach (Spinacia oleracea)] in high tunnels in two locations in New Mexico were investigated, first using a simulation analysis in which yields were stochastic variables followed by a sensitivity analysis to examine returns from the high tunnel designs more closely. The returns examined in the sensitivity analysis were net of high tunnel materials, crop seed cost, and electricity. Two planting dates were tested and three high tunnel designs were examined: a single layer covering the house (SL), a double layer inflated with air (DL), and a double layer inflated with air and containing black water barrels to store heat (DL+B). The SL and DL designs appear to be the more appropriate technology for both locations for spinach, whereas for lettuce the DL+B model might be a reasonable option in Alcalde, a more-northern location. Overall, the SL and DL models provided adequate protection for growing crops, were less expensive to build, provided more interior growing space, and resulted in higher probabilities of producing positive returns, compared with the DL+B design. The DL design performed similarly to the SL design, but required running electricity to the structure to power the inflation fan, adding to the cost. As a result, expected returns in all cases were higher using the SL design based on the results of the sensitivity analyses. Combining the risk and the sensitivity analyses provides growers with a unique evaluation process to make high tunnel design, planting date, and crop choices.


1993 ◽  
Vol 3 (1) ◽  
pp. 92-95 ◽  
Author(s):  
Otho S. Wells ◽  
J. Brent Loy

Crop growth is enhanced with the use of relatively inexpensive rowcovers and high tunnels. Even though these structures do not provide the same degree of environmental control as greenhouses, they modify the climate sufficiently to lengthen the growing season from 1 to 4 weeks in the spring and 2 to 8 weeks in the fall. Rowcovers generally remain over a crop for 2 to 4 weeks, whereas a high tunnel may function for an entire growing season. Both systems require a relatively low capital investment, provide a good return on investment, and improve the ability of new growers to succeed in the crop production business. The selection of either rowcovers or high tunnels will depend on the management program of a grower; however, both growing systems potentially are economically viable means of season extension.


Sign in / Sign up

Export Citation Format

Share Document