scholarly journals Arbuscular Mycorrhiza and Growth Responses of Several Ornamental Plants Grown in Soilless Peat-based Medium Amended with Coconut Dust (Coir)

2003 ◽  
Vol 13 (3) ◽  
pp. 482-487 ◽  
Author(s):  
R.G. Linderman ◽  
E.A. Davis

Coconut fiber dust (coir) is being used as a peat substitute or amendment to potting mixes with varied results. However, its microbial composition and compatibility with beneficial microbes that might be added to growth media in the nursery, such as mycorrhizal fungi, has not been determined. In this study, coir was amended to a peat-based medium (15%, 30%, 45%, and 60% by volume) to determine its effects on growth of several ornamental plants and on the formation and function of the arbuscular mycorrhizal (AM) fungus Glomus intraradices. Mycorrhizae formed as well, and usually better, in all the coir-amended peat treatments as in peat alone. The magnitude of growth enhancement due to mycorrhizae was small for the plants tested in these media compared to that which usually occurs in soil-based media. In this experiment, plant growth responses appeared to be independent of level of mycorrhizal colonization and were plant species dependent. Consistent growth enhancement from mycorrhizae only occurred with marigold (Tagetes patula). With germander (Teucrium fruticans), growth was depressed with mycorrhizal inoculation in the medium composed of 60% coir. Growth of lavender (Lavandula augustifolia) was depressed in all coir-amended media, with or without AM inoculation, compared to the nonamended control. These results confirm previous reports of varied response of plant species to coir, and indicate the lack of any detrimental effects of coir on mycorrhiza formation.

2012 ◽  
Vol 78 (17) ◽  
pp. 6180-6186 ◽  
Author(s):  
E. Torrecillas ◽  
M. M. Alguacil ◽  
A. Roldán

ABSTRACTIn this study, we have analyzed and compared the diversities of the arbuscular mycorrhizal fungi (AMF) colonizing the roots of five annual herbaceous species (Hieracium vulgare,Stipa capensis,Anagallis arvensis,Carduus tenuiflorus, andAvena barbata) and a perennial herbaceous species (Brachypodium retusum). Our goal was to determine the differences in the communities of the AMF among these six plant species belonging to different families, usingB. retusumas a reference. The AMF small-subunit rRNA genes (SSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Thirty-six AMF phylotypes, belonging toGlomusgroup A,Glomusgroup B,Diversispora,Paraglomus, andAmbispora, were identified. Five sequence groups identified in this study clustered to known glomalean species or isolates: groupGlomusG27 toGlomus intraradices, groupGlomusG19 toGlomus iranicum, groupGlomusG10 toGlomus mosseae, groupGlomusG1 toGlomus lamellosum/etunicatum/luteum, and groupAmbispora1 toAmbispora fennica. The six plant species studied hosted different AMF communities. A certain trend of AMF specificity was observed when grouping plant species by taxonomic families, highlighting the importance of protecting and even promoting the native annual vegetation in order to maintain the biodiversity and productivity of these extreme ecosystems.


2014 ◽  
Vol 34 (1) ◽  
Author(s):  
Mariusz Tadych ◽  
Janusz Błaszkowski

In a pot experiment conducted in a greenhouse, the response of 6 plant species dominating in the succession of vegetation of a deflation hollow of the Łeba Bar to inoculation with arbuscular mycorrhizal fungi (AMF) was investigated. The inoculum was a mixture of soil, roots and spores of 5 species of AMF with the dominant species <i>Glomus aggregatum</i>. Except for <i>Corynephorus canescens</i> and <i>Festuca rubra</i> subsp. <i>arenaria</i>, both the growth and the dry matter of above-ground parts of plants of <i>Agrostis stolonifera, Ammophila arenaria, Corynephorus canescens, Juncus articulatus</i> and <i>J. balticus</i> inoculated with AMF were higher than those growing in soils lacking infection propagules of these fungi. Inoculation with AMF decreased the dry matter of root: shoot ratios in 5 plant species. This property was not determined in <i>Festuca rubra</i> subsp. <i>arenaria</i> due to the death of all control plants. The level of mycorrhizal infection was low and did not correlate with the growth responses found. The high growth reaction of <i>Juncus</i> spp. to AMF found in this study suggests that the opinion of non-mycotrophy or low dependence of plants of <i>Juncaceae</i> on AMF was based on results of investigations of plants growing in wet sites known to inhibit the formation of mycorrhizae.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 449e-449
Author(s):  
Martin Trépanier ◽  
Jacques-André Rioux

Roots of majority of natural shrubs are colonized by many species of vesicular–arbuscular mycorrhizal (VAM) fungi. These kinds of fungi form a symbiosis with the root system of the plant and give a better water and mineral absorption (P, Zn, N, Cu, etc.), and a better root disease resistance to the plant. However, the media usually used in ornemental plants nursery contain no or few mycorrhizal fungi. For now, new commercial inoculum are available and could be used to get the advantages provided by VAM fungi. In order to evaluate the potential of ornamental plants to be colonized, we have inoculated the rooting media with three VAM fungi (Glomus intraradices Schenk & Smith, Glomus etunicatum Becker & Gerdemann, and Glomus mosseae Nicol. & Gerd.; Premier Tech, Rivière-du-Loup, Québec). The inoculum proportion used contained about 1500 propagules/L. After 16 weeks, near 80% of the 200 species and cultivars tested have shown a colonization by at least one of the fungi. We shall present here a list of the results.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 447C-447
Author(s):  
Martin Trépanier ◽  
Jacques-André Rioux

A commercial inoculum of Glomus intraradices Schenk and Smith, a vesicular–arbuscular mycorrhizal fungus, has been used with the objective of studying its effects on rooting and on subsequent growth of two woody ornamental plants (Juniperus Sabina `Blue Danube' and Cornus sericea `Coloradensis'). This inoculum, called Mycorise™, is produced by Premier Peat Co. (Rivière-du-Loup, Québec, Canada) and it contains one propagule/g of Glomus intraradices. The cuttings's rooting media was mixed in order to contain 0%, 10%, 20%, 40%, or 80% of inoculum. Hardwood cuttings have been inserted in 65-ml cells and put under a mist until good rooting. For both species used, presence of inoculum in rooting media has not given significant effects during the rooting stage of cuttings, but has given some during the following stage of growth in 6-L containers. The growth of young mycorrhized plants of Juniperus was up to 50% greater than the control after the first season of growth. The young plants of Cornus have only showed a tendency to have a higher growth. Moreover, several mineral elements (N, P, Ca, Mn, Zn) were present at higher concentrations on mycorrhized plants. For roots colonization by the fungus and growth results, the inoculum proportion of the rooting media the most appropriate for Juniperus Sabina `Blue Danube', a slow-rooting species, was 40%, and the most appropriate for Cornus sericea `Coloradensis', a quick-rooting species, was 20%.


HortScience ◽  
1999 ◽  
Vol 34 (7) ◽  
pp. 1217-1220 ◽  
Author(s):  
Roger T. Koide ◽  
Lena L. Landherr ◽  
Ylva L. Besmer ◽  
Jamie M. Detweiler ◽  
E. Jay Holcomb

We inoculated six common annual bedding plant species with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith using two fertilizer P concentrations (3 or 15 μg·mL-1) and three inoculation timings (inoculation at sowing, at transplanting, or at both times). The plant species used were: Salvia splendens F. Sellow ex Roem. & Schult. cv. Firecracker Rose; Impatiens walleriana Hook. f. cv. Sun and Shade Royal Red; Tagetes patula L. cv. Girls Golden; Petunia ×hybrida Hort. Vilm.-Andr. cv. Freedom Blue; Coleus ×hybridus Voss. cv. Jazz Salmon; and Viola ×wittrockiana Gams. cv. Majestic Giant White. In general, Coleus, Petunia, and Viola were colonized more than were Impatiens, Tagetes, and Salvia. Inoculation at sowing required less inoculum than either of the other methods. Moreover, it was generally as effective in promoting colonization as double inoculation, and was often more effective than inoculation at transplanting. Mycorrhizal colonization was significantly reduced by the higher P concentration. The use of Myconate®, a water-soluble form of the flavonoid formononetin, significantly stimulated colonization in Salvia.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 442D-442
Author(s):  
S. Bergeron ◽  
M.-P. Lamy ◽  
B. Dansereau ◽  
S. Gagne ◽  
S. Parent ◽  
...  

While the majority of terrestial plants are colonized in soils by vesicular-arbuscular fungi (AM), that does not mean that these species can form a symbiosis with AM fungi in an artificial substrate under commercial production conditions. The purpose of this study was to identify those plants having a colonization potential. In Mar. 1998, 51 species and cultivars of ornamental plants were inoculated with two vesicular-arbuscular fungi (Glomus intraradices Schenk & Smith, and Glomus etunicatum Becker & Gerdemann; Premier Tech, Rivière-du-Loup, Quèbec). Periodic evaluations of colonization were done 5, 7, 9, 12, and 16 weeks after seeding. More than 59% of these plants tested were shown to have a good colonization potential with G. intraradices. Species belonging to the Compositae and Labiatae families all colonized. Species in the Solanaceae family showed slight to excellent colonization. Several species studied belonging to the Amaranthaceae, Capparidaceae, Caryophyllaceae, Chenopodiaceae, Cruciferae, Gentianaceae, Myrtaceae et Portulaceae families were not colonized. Root colonization with G. etunicatum was not detected on these species and cultivars during this short experimental period.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Wang ◽  
Yin Wang

Morphological observation of arbuscular mycorrhizal fungi (AMF) species in rhizospheric soil could not accurately reflect the actual AMF colonizing status in roots, while molecular identification of indigenous AMF colonizing citrus rootstocks at present was rare in China. In our study, community of AMF colonizing trifoliate orange (Poncirus trifoliataL. Raf.) and red tangerine (Citrus reticulataBlanco) were analyzed based on small subunit of ribosomal DNA genes. Morphological observation showed that arbuscular mycorrhizal (AM) colonization, spore density, and hyphal length did not differ significantly between two rootstocks. Phylogenetic analysis showed that 173 screened AMF sequences clustered in at least 10 discrete groups (GLO1~GLO10), all belonging to the genus ofGlomusSensu Lato. Among them, GLO1 clade (clustering with uncultured Glomus) accounting for 54.43% clones was the most common in trifoliate orange roots, while GLO6 clade (clustering withGlomus intraradices) accounting for 35.00% clones was the most common in red tangerine roots. Although, Shannon-Wiener indices exhibited no notable differences between both rootstocks, relative proportions of observed clades analysis revealed that composition of AMF communities colonizing two rootstocks varied severely. The results indicated that native AMF species in citrus rhizosphere had diverse colonization potential between two different rootstocks in the present orchards.


1998 ◽  
Vol 28 (1) ◽  
pp. 150-153
Author(s):  
J N Gemma ◽  
R E Koske ◽  
E M Roberts ◽  
S Hester

Rooted cuttings of Taxus times media var. densiformis Rehd. were inoculated with the arbuscular mycorrhizal fungi Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe or Glomus intraradices Schenck and Smith and grown for 9-15 months in a greenhouse. At the completion of the experiments, leaves of inoculated plants contained significantly more chlorophyll (1.3-4.1 times as much) than did noninoculated plants. In addition, mycorrhizal plants had root systems that were significantly larger (1.3-1.4 times) and longer (1.7-2.1 times) than nonmycorrhizal plants, and they possessed significantly more branch roots (1.3-2.9 times). No differences in stem diameter and height or shoot dry weight were evident at the end of the experiments, although the number of buds was significantly greater in the cuttings inoculated with G. intraradices after 15 months.


Sign in / Sign up

Export Citation Format

Share Document