scholarly journals Chemical Blossom Thinners Vary in Their Effect on Sweet Cherry Fruit Set, Yield, Fruit Quality, and Crop Value

2006 ◽  
Vol 16 (1) ◽  
pp. 66-70 ◽  
Author(s):  
Matthew D. Whiting ◽  
David Ophardt ◽  
James R. McFerson

The commercial adoption of the relatively new rootstock `Gisela 5' (Prunus cerasus L. × P. canescens L.) has been limited in the United States sweet cherry (P. avium L.) industry despite its ability to induce precocity and productivity and reduce scion vigor compared to the standard Mazzard (P. avium). This is due in large part to inadequate crop load management that has led to high yields of small fruit. This paper reports on sweet cherry chemical blossom thinning trials conducted in 2002 and 2003. Two percent ammonium thiosulphate (ATS), 3% to 4% vegetable oil emulsion (VOE), and tank mixes of 2% fish oil + 2.5% lime sulphur (FOLS) were applied to entire 8- and 9-year-old `Bing'/`Gisela 5' sweet cherry canopies at about 10% full bloom (FB) and again at about 90% FB. In both years, ATS and FOLS reduced fruit set by 66% to 33% compared to the control (C). VOE reduced fruit set by 50% compared to C in 2002 but had no effect in 2003. In 2002, fruit yield was 30% to 60% lower from thinned trees. In 2003, fruit yield was unaffected by thinning treatment. In 2002, ATS and FOLS improved fruit soluble solids but had no effect in 2003. VOE did not affect fruit soluble solids in 2002 and reduced fruit soluble solids by 12%, compared to C, in 2003. In 2002, each thinning treatment nearly eliminated the yield of the small fruit (≤21.5-mm diameter) and increased yield of large fruit (≥26.5 mm) by more than 400%, compared to C. In 2003, ATS and FOLS did not affect yield of small fruit but increased the yield of large fruit by 60%. In 2003, VOE-treated trees yielded 4.3 kg of small fruit per tree compared to about 0.15 kg from C, suggesting a phytotoxic response to VOE beyond that which may effect thinning. Compared to C, ATS and FOLS consistently reduced fruit set and improved fruit quality. We conclude that commercially acceptable yields of excellent quality `Bing' sweet cherries can be grown on size-controlling and precocious rootstocks.

HortScience ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 288-294 ◽  
Author(s):  
Shuresh Ghimire ◽  
Annette L. Wszelaki ◽  
Jenny C. Moore ◽  
Debra Ann Inglis ◽  
Carol Miles

The use of plastic biodegradable mulch (BDM) in many vegetable crops such as tomato (Solanum lycopersicum L.), broccoli (Brassica oleracea L. var. italica), and pepper (Capsicum annuum L.) has been proven to be of equal benefit as polyethylene (PE) mulch. However, there are limited research findings on the performance of BDM with a large fruited crop such as pumpkin (Cucurbita pepo L.) where the fruit can rest directly on the mulch for an extended period. To investigate whether heavy fruit might cause the mulch to degrade more quickly than expected, thereby, influencing weed control, fruit yield, and fruit quality including mulch adhesion on fruit, we carried out a field experiment in 2015 and 2016 at two locations in the United States with distinctive climates, Mount Vernon, WA and Knoxville, TN. Three plastic mulches marketed as biodegradable (BioAgri, Organix, and Naturecycle), one fully biodegradable paper mulch (WeedGuardPlus), and one experimental plastic BDM consisting of polylactic acid and polyhydroxyalkanoates (Exp. PLA/PHA) were evaluated against PE mulch and bare ground where ‘Cinnamon Girl’ pie pumpkin was the test crop. There was significant weed pressure in the bare ground plots at both locations over both years, indicating viable weed seed banks at the field sites. Even so, weed pressure was minimal across mulch treatments at both locations over both years because the mulches remained sufficiently intact during the growing season. The exceptions were Naturecycle in 2015 at both locations because of the splitting of the mulch and consequently higher percent soil exposure (PSE), and the penetration of all the plastic mulches at Knoxville by nutsedge (Cyperus sp. L.); nutsedge did not penetrate WeedGuardPlus. At Mount Vernon, overall pumpkin yield across both years averaged 18.1 t·ha−1, and pumpkin yield was the greatest with PE, Exp. PLA/PHA, BioAgri, and Naturecycle (19.9–22.8 t·ha−1), intermediate with Organix and WeedGuardPlus (15.3–18.4 t·ha−1), and the lowest for bare ground (8.7 t·ha−1). At Knoxville, overall pumpkin yield across both years averaged 17.7 t·ha−1, and pumpkin yield did not differ because of treatment (15.3–20.4 t·ha−1). The differences in yield between treatments at Mount Vernon were likely because of differences in the soil temperature. At 10 cm depth, the average soil temperature was 1 °C lower for bare ground and WeedGuardPlus as compared with PE mulch and plastic BDMs (20.8 °C). In contrast, soil temperatures were generally higher (25.2 to 28.3 °C) for all treatments at Knoxville and more favorable to crop yield compared with Mount Vernon. Forty-two percent to 59% of pumpkin fruit had mulch adhesion at harvest at Mount Vernon, whereas only 3% to 12% of fruit had mulch adhesion at Knoxville. This difference was because of the location of fruit set—at Mount Vernon, most of the fruit set was on the mulch whereas at Knoxville, vine growth was more extensive and fruit set was mostly in row alleys. Fruit quality differences among treatments were minimal during storage across both locations and years except for total soluble solids (TSS) in 2016, which was lower for bare ground and WeedGuardPlus compared with all the plastic mulches. Taken overall, these results indicate that pie pumpkin grown with BDM has fruit yield and quality comparable to PE mulch; however, adhesion of some BDMs on fruit could affect marketable yield. Furthermore, paper mulch appears to prevent nutsedge penetration.


2004 ◽  
Vol 129 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Matthew D. Whiting ◽  
Gregory A. Lang

Canopy fruit to leaf area ratios (fruit no./m2 leaf area, F:LA) of 7- and 8-year-old `Bing' sweet cherry (Prunus avium L.) on the dwarfing rootstock `Gisela 5' (P. cerasus L. × P. canescens L.) were manipulated by thinning dormant fruit buds. F:LA influenced yield, fruit quality, and vegetative growth, but there were no consistent effects on whole canopy net CO2 exchange rate (NCERcanopy). Trees thinned to 20 fruit/m2 LA had yield reduced by 68% but had increased fruit weight (+25%), firmness (+25%), soluble solids (+20%), and fruit diameter (+14%), compared to unthinned trees (84 fruit/m2). Fruit quality declined when canopy LA was ≈200 cm2/fruit, suggesting that photoassimilate capacity becomes limiting to fruit growth below this ratio. NCERcanopy and net assimilation varied seasonally, being highest during stage III of fruit development (64 days after full bloom, DAFB), and falling more than 50% by 90 DAFB. Final shoot length, LA/spur, and trunk expansion were related negatively to F:LA. F:LA did not affect subsequent floral bud induction per se, but the number of flowers initiated per bud was negatively and linearly related to F:LA. Although all trees were thinned to equal floral bud levels per spur for the year following initial treatment (2001), fruit yields were highest on the trees that previously had no fruit, reflecting the increased number of flowers initiated per floral bud. Nonfruiting trees exhibited a sigmoidal pattern of shoot growth and trunk expansion, whereas fruiting trees exhibited a double sigmoidal pattern due to a growth lag during Stage III of fruit development. Vegetative growth in the second year was not related to current or previous season F:LA. We estimate that the LA on a typical spur is only sufficient to support the full growth potential of a single fruit; more heavily-set spurs require supplemental LA from nonfruiting shoots. From these studies there appears to be a hierarchy of developmental sensitivity to high F:LA for above-ground organs in `Bing'/`Gisela 5' sweet cherry trees: trunk expansion > fruit soluble solids (Stage III) > fruit growth (Stage III) > LA/spur > shoot elongation > fruit growth (Stages I and II) > LA/shoot. Current season F:LA had a greater influence on fruit quality than prior cropping history, underscoring the importance of imposing annual strategies to balance fruit number with LA.


2021 ◽  
Vol 37 (37) ◽  
pp. 60-69
Author(s):  
Mirela Calinescu ◽  
◽  
Ivona Mazilu ◽  
Emil Chitu ◽  
Madalina Butac ◽  
...  

The aim of this paper was to study the influence of low vigor rootstocks on the 'Regina' cherry cultivar. The study was conducted at Research Institute for Fruit Growing Pitesti, Arges county, Romania between 2019 and 2021. A bifactorial experiment was set up, with A factor-the rootstock ('Gisela 3', 'Gisela 5', 'Gisela 12' and 'Weigi 2') and B factor-the study year (2019, 2020 and 2021). Fruiting and vegetative growth data (fruit production, the trunck cross-section area-TCSA, the annual increase of TCSA, the productivity index and the ratio between the fruit production and the annual increase of TCSA), as well as fruit quality data (fruit mass, firmness, pH, total soluble content, chromatic coordinates of epicarp color and chlorophyll fluorescence) were collected. 'Gisela 5' rootstock recorded the highest value of TCSA annual increase (11.46 kg/cm2) and had also the highest cromatic coordinates values: colour brightness (25.68), red pigment (15.61) and yellow content (4.12).The highest vigor of the cultivar 'Regina' was observed in 'Weigi 2' rootstock variant (with an TCSA value of 44.71 cm2), given that 'Weigi 2' TCSA annual increase was similar to 'Gisela 5'. 'Gisela 3' rootstock stood out for its fruit highest pH (3.97), fruit yield (13.51 t/ha), lowest vigor (TCSA=24.19 cm2), smallest annual TCSA increase (6.11 cm2), highest productivity index 0.219 kg/cm2) and highest fruit production to annual TCSA increase ratio (1.79 kg/cm2). Taking into account climatic accidents that marked the spring of 2021, on the average of the study years, the cultivar 'Regina' grafted on the rootstock 'Gisela 12' was distinguished by fruit weight (10.02 g), firmness (66.53 units HPE Bareiss) and TSS (16.03°Brix) on the background of the lowest fruit yield. A negative very signifficant correlation between fruit yield and fruit quality traits (weight, firmness and total soluble solids) was found.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 654-659 ◽  
Author(s):  
Olivia M. Lenahan ◽  
Matthew D. Whiting ◽  
Donald C. Elfving

This paper reports on the potential of gibberellic acid (GA3 and GA4+7) to reduce sweet cherry (Prunus avium L.) floral bud induction and balance fruit number and improve fruit quality in the season following application. In 2003, GA3 was applied to `Bing'/`Gisela 1' trees at 50 and 100 mg·L-1 at the end of stage I of fruit development, end of stage II, and on both dates. These treatments were compared to the industry standard application of 30 mg·L–1 applied at the end of stage II and an untreated control. Fruit quality was evaluated in the year of application (i.e., nontarget crop) and return bloom, fruit yield and quality were assessed in the subsequent season (2004). In 2003, GA3 delayed fruit maturity proportional to rate. In 2004, bloom density and fruit yield were related negatively and linearly to GA3 concentration. GA3 reduced the number of reproductive buds per spur and did not affect the number of flowers per reproductive bud. Nonspur flowering at the base of 1-year-old shoots was more inhibited by GA3 than flowering on spurs. Double applications significantly reduced bloom density and yield versus single applications. Trees treated with two applications of 50 and 100 mg·L–1 yielded fruit with 7% and 12% higher soluble solids, 15% and 20% higher firmness, and 7% and 14% greater weight, respectively. However, no treatment improved crop value per tree. In a separate isomer trial, GA3 and GA4+7 were applied to `Bing'/`Gisela 1' trees at 100 and 200 mg·L–1 at both the end of stage I and II in 2004. GA3 and GA4+7 applied at 100 mg·L–1 reduced bloom density similarly by 65%. GA3was more inhibiting than GA4+7at 200 mg·L–1, reducing bloom density by 92% versus 68%. We observed a 4- to 5-day delay in flowering from both GA formulations at 200 mg·L–1. At both concentrations, GA3 reduced yield by 71% and 95% versus 34% and 37% reduction by GA4+7. Fruit weight and soluble solids were unaffected but fruit firmness was increased by all treatments (6% to 17%). However, crop value per tree was highest from untreated control because improvements in fruit quality were insufficient to offset reductions in yield. GA3 shows potential as a novel crop load management tool in productive `Bing' sweet cherry orchard systems.


HortScience ◽  
2014 ◽  
Vol 49 (8) ◽  
pp. 1046-1051 ◽  
Author(s):  
Wenjing Guan ◽  
Xin Zhao ◽  
Donald W. Dickson ◽  
Maria L. Mendes ◽  
Judy Thies

Interest in specialty melons (Cucumis melo) with distinctive fruit characteristics has grown in the United States in recent years. However, disease management remains a major challenge in specialty melon production. In this study, grafting experiments were conducted to determine the effectiveness of using Cucumis metulifer, a species known for its genetic resistance to root-knot nematodes (RKNs; Meloidogyne spp.), as a potential rootstock for managing RKNs in susceptible specialty melon cultivars. In the greenhouse experiment, honeydew melon ‘Honey Yellow’ was grafted onto C. metulifer and inoculated with M. incognita race 1. The grafted plants exhibited significantly lower gall and egg mass indices and fewer eggs compared with non- and self-grafted ‘Honey Yellow’. Cucumis metulifer was further tested as a rootstock in conventional and organic field trials using honeydew melon ‘Honey Yellow’ and galia melon ‘Arava’ as scions. ‘Honey Yellow’ and ‘Arava’ grafted onto C. metulifer exhibited significantly lower galling and reduced RKN population densities in the organic field; however, total and marketable fruit yields were not significantly different from non- and self-grafted plants. Although the improvement of RKN resistance did not translate into yield enhancements, incorporating grafted specialty melons with C. metulifer rootstock into double-cropping systems with RKN-susceptible vegetables may benefit the overall crop production by reducing RKN population densities in the soil. At the conventional field site, which was not infested with RKNs, ‘Honey Yellow’ grafted onto C. metulifer rootstock had a significantly lower total fruit yield than non-grafted ‘Honey Yellow’ plants; however, fruit yields were similar for ‘Arava’ grafted onto C. metulifer rootstock and non-grafted ‘Arava’ plants. Although no significant impacts on the fruit quality attributes of ‘Honey Yellow’ were observed, grafting onto C. metulifer decreased the flesh firmness of ‘Arava’ in both field trials and resulted in a reduction in total soluble solids content under conventional production. In summary, grafting RKN-susceptible melons onto C. metulifer rootstock offers promise for growing these specialty melons; however, more studies are needed to elucidate the scion–rootstock interaction effect on fruit yield and quality.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 582-586 ◽  
Author(s):  
Matthew D. Whiting ◽  
Gregory Lang ◽  
David Ophardt

Traditional sweet cherry (Prunus avium L.) training systems in the United States are based upon vigorous rootstocks and multiple leader vase canopy architectures. The sweet cherry research lab at Washington State University has been investigating the potential of new rootstocks and training systems to improve production efficiency and produce high quality fruit. This paper describes the effects of three rootstocks—Mazzard (P. avium), `Gisela 6', and `Gisela 5' (P. cerasus × P. canescens)—and four training systems—central leader, multiple-leader bush, palmette, and y-trellis—on `Bing' sweet cherry tree vigor, fruit yield and quality over a seven year period. Compared to trees on Mazzard, trees on `Gisela 5' and `Gisela 6' had 45% and 20% lower trunk cross-sectional areas after 7 seasons, respectively. Trees on `Gisela 6' were the most productive, yielding between 13% and 31% more than those on `Gisela 5' and 657% to 212% more than trees on Mazzard, depending on year. Both Gisela rootstocks significantly improved precocity compared to Mazzard, bearing fruit in year 3 in the orchard. Canopy architecture had only moderate effects on tree vigor and fruit yield. Across rootstocks, bush-trained trees were about 25% less productive compared to the other systems, which exhibited similar cumulative yields (102 kg/tree). Fruit weight was negatively and closely (r2 = 0.84) related to tree yield efficiency (kg·cm–2). Crop value was related positively to fruit yield.


Author(s):  
M. Ansari ◽  
G. H. Davarynejad ◽  
J. Tornyai ◽  
J. Nyéki ◽  
Z. Szabó ◽  
...  

An experiment conducted using factorial based on randomized completely block design during 2005 and 2006. Flowers of Érdi bőtermő, Érdi jubileum and Cigány meggy before anthesis and in balloon stages were isolated with paper bags from guest pollens and pollinated in appropriate time. The averages of final fruit set showed the advantage of open pollination (14.6% fruit set) in compare with artificial self pollination (13.0% fruit set) and natural self pollination (4.4% fruit set). Siah mashhad sweet cherry cultivar with more than 70% overlap of flowering and 9.8% fruit set in 2005 and 17.9% in 2006 was the best among applied pollinisers for Érdi bôtermô sour cherry cultivar.Also, Siah mashhad sweet cherry with more than 50%overlap of flowering time and 25.8%fruit set was the best polliniser for Cigány megg. Among the pollinisers, Siah mashhad was the best for Érdi jubileum with more than 50% overlap and 15.22% fruit set. Meanwhile, pollens of Siah mashhad caused the increase of fruit size in Cigány meggy cultivar. phenomenon. Pollens of Siah mashhad caused reduction in total soluble solids of Érdi bôtermô fruits, however, it does not have any significant effect on the acid rate of fruits.


HortScience ◽  
2007 ◽  
Vol 42 (6) ◽  
pp. 1456-1462 ◽  
Author(s):  
Gerry Neilsen ◽  
Frank Kappel ◽  
Denise Neilsen

‘Lapins’ sweet cherry (Prunus avium L.) on Gisela 5 (Prunus cerasus × Prunus canescens) rootstock were subjected to a factorial combination of two crop load and eight fertigation treatments from the sixth to the eight growing seasons. Crop load treatments included full crop and dormant spur thinning to remove and maintain 50% of fruiting spurs. The eight fertigation treatments, which had been maintained since the first growing season, included low (42 mg·L−1), medium (84 mg·L−1), and high (168 mg·L−1) concentrations of N applied by sprinkler fertigation of Ca(NO3)2 annually ≈8 weeks postbloom. The medium N concentration was also applied with P fertigated in early spring or K fertigated in June. A standard N treatment involved broadcast application of NH4NO3 in early spring at 75 kg·ha−1 also followed with medium N sprinkler-fertigated postharvest in August. The medium N concentration was also supplied for 8 weeks postbloom through drip emitters. Removal of 50% of fruiting spurs decreased annual yield on average by only 10%. Average fruit size could be increased in years of high crop load (greater than 400 g fruit/cm2 trunk cross-sectional area), but in a year of low crop load (less than 100 g fruit/cm2), fruit size was very large (averaging greater than 14 g) and unaffected by crop load adjustment. Minimal effects on fruit and leaf NPK concentrations, fruit firmness, soluble solids concentration (SSC), and titratable acidity (TA) were associated with yield reductions of 10%. Fertigation treatments resulted in a large range in tree vigor and yield during the experiment. High N applications reduced tree and fruit size and fruit TA and were undesirable. Annual P and K fertigation by sprinklers was generally ineffective, having minimal effects on tree PK nutrition and fruit quality with the exception of increased fruit firmness associated with P fertigation in 2005, when yield was low. Drip-fertigated trees were small, frequently had fruit with elevated SSC, but had deficient leaf K concentrations in 2004 implying a need to fertigate K when drip-irrigating.


2021 ◽  
Vol 13 (21) ◽  
pp. 12326
Author(s):  
Leangsrun Chea ◽  
Cut Erika ◽  
Marcel Naumann ◽  
Inga Smit ◽  
Bernd Horneburg ◽  
...  

Increasing fruit yield and quality of tomatoes under organic low-input conditions remains a challenge for producers and breeders. Therefore, it is necessary to identify superior tomato cultivars that are suitable for production and use as parents in breeding programmes. In the present study, the variations in plant morphology and fruit quality characteristics of tomato cultivars were assessed to reveal the traits associated with improved yield and fruit quality. Sixty diverse tomato cultivars were screened in 2015, and in 2016, a subset of 20 cultivars was selected for further evaluation under organic low-input conditions. The results showed high variability among cultivars in all 28 traits that were observed. Salad cultivars had lower plant growth and fruit quality (minerals, dry matter, total soluble solids, and total phenolics) by 10–70%, but they displayed 10–60% higher fruit yield and leaf minerals than cocktail cultivars. Salad tomato cultivars with superior yield and harvest index were mainly derived from breeding for intensive indoor production. Cocktail cultivars with superior yield were mainly derived from organic and outdoor breeding programs. There was a trade-off between fruit yield and quality, indicating a challenge for simultaneous improvement of yield and quality. The importance of Mg was highlighted because of its contribution to the fruit mineral concentration and fruit quality. Cultivars superior in one trait or trait combination under organic low-input conditions were identified to be used by producers and breeders as superior cultivars to meet their production targets and breeding objectives. The importance of Mg provides a novel path for further research on improving soil-available Mg in organic tomato production to enhance fruit mineral concentration and fruit quality in general.


2021 ◽  
Vol 42 (2) ◽  
pp. 471-486
Author(s):  
Josiéle Garcia Dutra ◽  
◽  
Roberta Marins Nogueira Peil ◽  
Tatiana da Silva Duarte ◽  
Cesar Valmor Rombaldi ◽  
...  

Substrate-filled pots are growing systems commonly used for vegetable farming. However, few are the studies available relating them to mini-watermelon cultivation. Our study presents a growing system using substrate-filled troughs and leachate recirculation as a low-cost and less environmentally harmful soilless cultivation system for mini-watermelons. For a growing system to be viable and provide high fruit yield and quality, several aspects must be studied, including substrate physical properties and reuse potential in successive crops, besides plant management-related aspects. Therefore, our goal was to evaluate the effects of a trough system and substrate reuse on changes in the properties of raw rice husk and on fruit yield and quality for mini-watermelons at different stem training. To this purpose, two trials were conducted using nutrient solution recirculation systems. In the first, we evaluated the effects of pot and trough systems. In the second, first- and second-use substrates were compared in the trough system. In both trials, one and two-stem training systems were analyzed. The results of the first trial show that the trough system had a greater positive impact on substrate water holding capacity (WHC), which increased from 7.9 to 15.6%, while the pots increased substrate WHC only to 11.2%. However, both systems neither affected fruit yield (8 kg/m² on average) nor fruit quality. The two-stem training promoted higher fruit yields (4.2 kg/plant) and contents of total soluble solids - TSS (11.4 °Brix) but did not affect average fruit weight. Moreover, the one-stem training provided higher fruit number (7.3 fruits/m²) and fruit yield (9.7 kg/m²). In the second trial, the reused substrate showed a higher WHC (12.4%) than the one used for the first time (9.9%). The reused substrate also provided better results in terms of fruit yield and quality (5.9 fruits/m², 5.3 kg/m², and 10.5o Brix). In the second trial, two-stem training also increased average fruit weight, and hence yields per plant. Nevertheless, the stem number did not affect fruit number per plant, fruit yield per square meter, and fruit quality.


Sign in / Sign up

Export Citation Format

Share Document