scholarly journals A Comparison of Fruit Quality and Consumer Preferences Among Three Cold-climate Strawberry Production Systems

2007 ◽  
Vol 17 (4) ◽  
pp. 586-591 ◽  
Author(s):  
Matthew D. Stevens ◽  
John D. Lea-Cox ◽  
Brent L. Black ◽  
Judith A. Abbott

In consumer-harvested marketing, crop management practices and production systems directly affect the experience of the customer. An experiment was designed to compare overall consumer preference and fruit quality characteristics among three perennial cold-climate strawberry (Fragaria ×ananassa) production systems: conventional matted row (CMR), advanced matted row (AMR), and cold-climate plasticulture (CCP). Replicate plots of each system were maintained for two harvest seasons. Volunteers harvested subplots in each system and completed a survey to evaluate pick-your-own consumer preferences. The CCP system was preferred by a majority of consumers in the first year, whereas the AMR system was rated highest in the second year. Preferences were positively correlated with ease of harvest and fruit appearance and negatively correlated with the percentage of fruit unfit for harvest. Fruit quality measurements made on marketable fruit in the second harvest season indicated that there were no treatment differences in titratable acidity or soluble solids concentration, but significantly lower fruit firmness in the CCP treatment compared with CMR and AMR.

1993 ◽  
Vol 118 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Carl E. Niedziela ◽  
Paul V. Nelson ◽  
Daniel H. Willits ◽  
Mary M. Peet

Commercial recommendations exist for using short-term salt-shocks on tomato (Lycopersicon esculentum Mill.) to improve fruit quality. Six experiments were conducted to 1) assess the influence of nutrient concentration and short-term salt-shocks on fruit quality and yield and 2) identify a vegetative predictor of subsequent fruit quality. The first objective was addressed in three nutrient film technique (NFT) experiments (Expts. 1-3). Four treatments were applied: two maintained constant at two baseline concentrations (0.25X and 1X-commercial level) and two provided salt-shock periods of 30 min, twice daily. There were no effects of baseline concentration or salt-shocks on total number and weight of marketable fruit. Fruit quality was better at the 1X baseline concentration as observed by higher titratable acidity (Expt. 2), higher percent dry matter (Expts. 2 and 3), higher soluble solids concentration (Expt. 2), and lower pH (Expts. 2 and 3), however, weight per marketable fruit was lower (Expt. 2). Salt-shocks had little effect on fruit quality, refuting its commercial potential. Salt-shocks decreased fruit pH (Expts. 1 and 3). However, titratable acidity increased at the 0.25X level and decreased at the 1X level (Expt. 3). In Expt. 2, but not in Expt. 3, citrate concentration in the fifth leaf from the apex of young vegetative plants was correlated with subsequent fruit quality. Three additional experiments in static hydroponics with vegetative plants showed no significant differences in leaf citrate levels due to a single, short-term salt-shock. Thus, citrate is not a good predictor of fruit quality.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 652b-652
Author(s):  
P.M. Perkins-Veazie ◽  
J.K. Collins ◽  
N. Maness ◽  
B. Cartwright

High populations of melon aphid (aphis gossypii) reduce cantaloupe plant growth and yield; effects on subsequent fruit quality are unknown. The purpose of this study was to evaluate fruit quality from plants with high and low aphid populations. Up to 50% of melons from plants having high aphid populations were unmarketable due to surface sooty mold. Melons from plants with high or low aphid populations, but not cultivars, were similar in flesh quality. The internal color of `Perlita' and `Sweet Surprise' was a more yellow hue while that of `TAM Uvalde' was more orange. `Sweet Surprise' melons were lower in percent soluble solids concentration and titratable acidity, but were higher in mg fructose/ml juice compared to the other cultivars. A trained taste panel of 30 people evaluated melons from 2 cultivars showing little damage from melon aphid infestations and from 2 cultivars exhibiting high damage. All melons had similar taste qualities with acceptable sweetness, flavor, odor and texture. These results show that high aphid populations deleteriously affect cosmetic appearance, but not flesh quality, of melons.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 434B-434
Author(s):  
Paul Wiley ◽  
Carlos H. Crisosto ◽  
R. Scott Johnson ◽  
Harry Andris

Fruit quality, storage potential, and consumer acceptance were evaluated for `Elegant Lady' peach fruit from non-conventional and conventional fertilizer management systems. Conventional treatments were fertilized with synthetic sources of nitrogen (ammonium nitrate), while the non-conventional plots received organic sources of nitrogen such as vetch cover, biosolids compost, grass compost, chicken manure, or steer manure. Fertilization treatments were applied at high (300 N unit per acre) and low rates (100 N unit/acre) 2 years before the first postharvest evaluation. Evaluations were carried out for three seasons. There were no significant differences in fruit firmness (N) measured at different fruit positions, soluble solids concentration (%), pH, titratable acidity (% malic acid), water loss susceptibility (%), rate of softening, red color (%), or inking incidence. The incidence of flesh browning, mealiness, and flesh bleeding was only related to storage time and not to the fertilizer source. Therefore, the storage potential was not affected by the nitrogen fertilizer source. In our in-store consumer preference test during the 1995 season, 950 consumers did not perceive any taste differences between fruit from the different nitrogen fertilizer sources. Despite this, consumers still would prefer to buy fruit produced using an organic source of nitrogen rather than synthetic sources.


2008 ◽  
Vol 43 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Cassandro Vidal Talamini do Amarante ◽  
Cristiano André Steffens ◽  
Álvaro Luiz Mafra ◽  
Jackson Adriano Albuquerque

The objective of this study was to assess the yield and fruit quality of apple produced with a conventional and an organic production systems in Southern Brazil. The orchards consisted of alternate rows from 10 to 12-year old 'Royal Gala' and 'Fuji' apple trees on M.7 rootstocks, grown as slender spindles, on 4x6 m spacing. Eighteen apple trees of each cultivar and management system were randomly selected and assessed for nutrition, flowering, fruit set, yield, and fruit quality during two growing seasons (2002/2003 and 2003/2004). The organic management system resulted in lower concentrations of K, Mg, and N in leaves and fruits, and in smaller fruits for both cultivars, and lower fruit yield for 'Fuji' than from the conventional production system. For both cultivars, fruits from the organic orchard harvested at commercial maturity had a more yellowish skin background color, higher percentage of blush in the fruit skin, higher soluble solids content, higher density, higher flesh firmness, and higher severity of russet than fruits from the conventional orchard. Fruit from the organic orchard had lower titratable acidity in 'Royal Gala', and higher incidence of moldy core and lower incidence of watercore in 'Fuji', than fruit from the conventional orchard. A non-trained sensory panel detected no significant differences for fruit attributes of taste, flavor and texture between fruit from the production systems for either cultivar.


2005 ◽  
Vol 15 (4) ◽  
pp. 886-895 ◽  
Author(s):  
S.S. Miller ◽  
R.W. McNew ◽  
B.H. Barritt ◽  
L. Berkett ◽  
S.K. Brown ◽  
...  

Cultivar and planting site are two factors that often receive minimal attention, but can have a significant impact on the quality of apple (Malus ×domestica) produced. A regional project, NE-183 The Multidisciplinary Evaluation of New Apple Cultivars, was initiated in 1995 to systematically evaluate 20 newer apple cultivars on Malling.9 (M.9) rootstock across 19 sites in North America. This paper describes the effect of cultivar and site on fruit quality and sensory attributes at a number of the planting sites for the 1998 through 2000 growing seasons. Fruit quality attributes measured included fruit weight, length: diameter ratio, soluble solids concentration (SSC), titratable acidity (TA), flesh firmness, red overcolor, and russet. Fruit sensory characteristics rated included crispness, sweetness, and juiciness, based on a unipolar intensity scale (where 1 = least and 5 = most), and acidity, flavor, attractiveness, and desirability based on a bipolar hedonic scale (where 1 = dislike and 5 = like extremely). All fruit quality and sensory variables measured were affected by cultivar. The two-way interaction of cultivar and planting site was significant for all response variables except SSC, TA, russet, crispness, and sweetness ratings. The SSC: TA ratio was strongly correlated with sweetness and acidity sensory rating, but was weakly correlated with flavor rating. The results demonstrate that no one cultivar is ideally suited for all planting sites and no planting site is ideal for maximizing the quality of all apple cultivars.


HortScience ◽  
2019 ◽  
Vol 54 (8) ◽  
pp. 1375-1383 ◽  
Author(s):  
Jinwook Lee ◽  
In-Kyu Kang ◽  
Jacqueline F. Nock ◽  
Christopher B. Watkins

The effects of preharvest and postharvest treatments of 1-methylcyclopropene (1-MCP) in combination or alone on fruit quality and the incidence of physiological disorders during storage of ‘Fuji’ apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] at 20 and 0.5 °C were investigated. Preharvest 1-MCP (Harvista) treatments were applied 4 or 10 days before harvest (DBH), and then fruit were either untreated or treated with 1-MCP (SmartFresh) postharvest. Fruit were stored at 20 °C for up to 4 weeks or at 0.5 °C for up to 36 weeks. At harvest, starch pattern indices and watercore incidence and severity were lower in fruit with preharvest 1-MCP treatment applied 10 DBH than in untreated fruit and in fruit treated 4 DBH. At 20 °C, the combination of preharvest and postharvest 1-MCP treatments reduced the internal ethylene concentration (IEC) more than preharvest 1-MCP treatment alone, but not to a greater extent than postharvest 1-MCP treatment alone. Greasiness and watercore were reduced more by the combination of preharvest and postharvest 1-MCP treatments than by either treatment alone. However, preharvest and postharvest 1-MCP treatments, in combination or alone, did not consistently affect flesh firmness, titratable acidity (TA), soluble solids concentration, color a* values, or incidences of flesh browning, core browning, and stem-end flesh browning. At 0.5 °C, the combination of preharvest and postharvest 1-MCP treatments inhibited IECs and maintained firmness and TA more than no treatment or preharvest 1-MCP treatment alone. However, there was a lesser extent of differences than there was with postharvest 1-MCP treatment alone. Incidences of physiological disorders were not consistently affected by the preharvest and postharvest 1-MCP treatments. Overall, the results suggested that the preharvest 1-MCP treatment positively affected fruit quality attributes compared with no treatment during shelf life and long-term cold storage, but not as effectively as a combination of preharvest and postharvest 1-MCP treatments.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 885-890 ◽  
Author(s):  
Gerry H. Neilsen ◽  
Denise Neilsen ◽  
Peter Toivonen ◽  
Linda Herbert

A randomized, complete block, split-plot experimental design with six replicates was established and maintained annually for the first five fruiting seasons (1999 to 2003) in a high-density apple [Malus sylvestris (L) Mill var. domestica (Borkh.) Mansf] orchard on M.9 rootstock planted in Apr. 1998. Main plot treatments involved eight different nutrient regimes, each containing three tree subplots of each of five different cultivars (Ambrosia, Cameo, Fuji, Gala, and Silken). This report compares a +phosphorus (P) treatment, involving annual fertigation at bloom time of 20 g P/tree as ammonium polyphosphate (10N–15P–0K), to a −P treatment. Both treatments also received nitrogen, potassium, and boron nutrients through fertigation. Drip fertigation of P increased 2 M KCl-extractable P to 0.4-m depth within 0.5-m distance of the drippers. Leaf and fruit P concentrations were consistently increased by the +P treatment with few differences among cultivars. P-fertigated trees also had a 20% increase in cumulative yield overall cultivars during the first five fruiting seasons. Standard fruit quality measurements, including fruit size, soluble solids concentration, titratable acidity, and red coloration were unaffected by P application. However, reductions in incidence of water core at harvest, increased resistance to browning, and elevated antioxidant content of harvested fruit measured in some years imply a role for P in apple membrane stability. The cumulative results indicate that applications of 20 g P as ammonium polyphosphate annually at bloom would be advantageous for apples receiving adequate fertigated applications of nitrogen, potassium, and boron. Best apple performance was associated with leaf P concentrations above 2.2 mg·g−1 dry weight and fruit P concentrations between 100 and 120 mg·kg−1 dry weight.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1011A-1011
Author(s):  
Said Ennahli ◽  
Sorkel Kadir

Variability due to soil types, topography, and climate within a vineyard influences grapevine physiological parameters and fruit quality. Technical feasibility of using precision Geographic Information System (GIS) as a viticulture tool to improve vineyard management and increase wine quality will be investigated. The study was conducted in an experimental vineyard where rows consist of plots with 24 cultivars and selections randomly planted and managed similarly. Monitored vineyard parameters collected by Global Positioning System (GPS) location include soil characteristics, soil moisture, vine growth, crop load, and fruit characteristics. Geospatial maps are used to differentiate yield between the cultivars and selections as high, medium, or low. Production was determined from each variety/selection within the vineyard. Yield parameters were number of clusters, cluster weight, and weight of 50 berries; fruit composition (such as pH), titratable acidity, soluble solids concentration, and anthocyanins were measured. Maps for each factor will be derived via GIS tools and spatial analysis will be conducted to assess which spatial variability factor has more effect on grapevine physiology, yield, and fruit quality. This type of analysis can be used by grape growers to achieve specific wine characteristics in a large or small vineyard by controlling all sources of variability, leading to the ability to perform precision viticulture in the future, with low cost.


2020 ◽  
Vol 30 (2) ◽  
pp. 193-203
Author(s):  
James A. Schrader ◽  
Diana R. Cochran ◽  
Paul A. Domoto ◽  
Gail R. Nonnecke

Increasing interest in grape (Vitis sp.) and wine production in the upper midwest region of the United States has created a need for science-based information that characterizes the potential of cold-climate cultivars to produce quality grapes with acceptable yields. We evaluated the yield and quality (composition) of grapes from 12 cold-climate, interspecific-hybrid grape cultivars (northern hybrids) grown in a randomized and replicated field plot in central Iowa. The grape trial was planted in 2008, and crop performance of cultivars was evaluated from 2012 through 2017 (yield) and 2014 through 2017 (berry composition). The trial included two established cultivars, five newer cultivars, and five advanced selections. The established cultivars included in the study as controls were Frontenac and St. Croix. The newer cultivars evaluated in this study were Arandell, Corot Noir, La Crescent, Marquette, and Petit Ami, and the advanced selections were MN 1189, MN 1200, MN 1220, MN 1235, and MN 1258. Yield and productivity were characterized by measuring yield per vine, number of clusters per vine, average cluster weight, and pruning weight. The fruit composition indices were soluble solids concentration (SSC), pH, titratable acidity (TA), and sugar:acid ratio (SSC ÷ TA). On the basis of their strong results for both yield and fruit composition measures, ‘Marquette’, MN 1235, and MN 1220 ranked as the top-performing cultivars in Iowa’s climate, followed by Petit Ami and St. Croix. ‘Petit Ami’ had slightly lower yield consistency and slightly lower results for SSC than did the top performing cultivars, and St. Croix had among the highest and most consistent yields of the trial but showed lower results for SSC and sugar:acid ratio than many of the other cultivars. ‘La Crescent’ had midrange yields and high SSC, but the high TA of ‘La Crescent’ fruit resulted in a low sugar:acid ratio at harvest. Two cultivars (MN 1258 and MN 1200) had relatively low yields in Iowa’s climate but achieved good results for composition indices. ‘Frontenac’ had high, consistent yields and achieved high SSC, but the very high TA of ‘Frontenac’ fruit resulted in a very low sugar:acid ratio compared with most other cultivars. The remaining three cultivars (Corot Noir, MN 1189, and Arandell) performed poorly in Iowa’s climate, showing both low yield and undesirable fruit composition indices compared with the other cultivars in the trial. An itemized summary of the relative ratings for yield and fruit composition is provided to aid growers in selection and management of grape cultivars for use in Iowa and other areas of similar climate.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 69
Author(s):  
Elsa Sánchez ◽  
Robert Pollock ◽  
Timothy Elkner ◽  
Thomas Butzler ◽  
Francesco Di Gioia

Selecting vegetable cultivars suitable to local environmental conditions and with quality traits desired by the evolving market and consumer needs is an important production decision farmers face annually. As seed companies continue to expand their offerings of new cultivars and rootstocks, selecting the best cultivar and/or scion/rootstock combination can be challenging for farmers. Land-grant universities, through their integrated research and extension programs, can provide an unbiased, science-based evaluation of the available cultivar and rootstock options to assist farmers in making this important selection. A two-year study was conducted to evaluate 20 hybrid cultivars and two grafted entries of muskmelons at three locations in Pennsylvania in 2018 and 2019 to provide farmers with science-based recommendations focused on fruit yield and physicochemical quality characteristics. Most cultivars did not differ in fruit yields from the standard “Aphrodite”. “Sugar Cube” produced more, smaller sized melons than “Aphrodite”. However, the combination of the soluble solids concentration, flesh pH, and titratable acidity values was not as favorable, indicating that consumer preference may be lower for “Sugar Cube” than for other cultivars. Yield from grafted entries was not different from the non-grafted “Aphrodite”; although, biotic and abiotic stressors favoring the use of grafting were not present throughout the study. Physicochemical evaluation of the combination of “Aphrodite” scion and “Flexifort” rootstock was more favorable than “Aphrodite/RS841” and non-grafted “Aphrodite”. This combination may be desirable even in the absence of yield stressors.


Sign in / Sign up

Export Citation Format

Share Document