scholarly journals Drip-irrigation System Component and Design Considerations for Vegetable Crops

1992 ◽  
Vol 2 (1) ◽  
pp. 25-27
Author(s):  
D.C. Sanders

The following should be considered when installing and maintaining a drip irrigation system for vegetable crops: water source (surface or ground water); water quality (salinity, particulate matter, contaminants); size of area to be irrigated; pump size; soil type; drip tape type; crop to be irrigated; management skill of the operator; automation needs; water meter and budget. Use a professional designer.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1119d-1119
Author(s):  
T.K. Hartz ◽  
A. Baameur ◽  
D.B. Holt

A study was conducted to determine the feasibility of fieldscale CO2 enrichment of vegetable crops grown under tunnel culture. Cucumber, squash and tomato were grown under polyethylene tunnels in a manner similar to commercial practices in southern California. The buried drip irrigation system was used to uniformly deliver an enriched CO2 air stream independent of irrigation. CO2 concentration in the tunnel atmosphere was maintained between 700-1000 ppm during daylight hours. Enrichment began two weeks after planting and continued for four weeks. At the end of the treatment phase, enrichment had significantly increased plant dry weights. This growth advantage continued through harvest, with enriched plots yielding 20%, 30% and 32% more fruit of squash, cucumber and tomato, respectively. As performed in this study, the expense of CO2 enrichment represented less than a 10% increase in total pre-harvest costs. Industrial bottled CO2 was used in this study; since bottled CO2 is captured as a byproduct of industrial processes, this usage represents a recycling of CO2 that would otherwise be vented directly to the atmosphere.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Vinod Kumar Tripathi ◽  
Birendra Bharti ◽  
Pratibha Warwade ◽  
Sushil Kumar Shukla ◽  
Prabeer Kumar Parhi

Filtration plays vital role to improve the efficacy and reduce the maintenance of drip irrigation systems. The experiment was conducted to evaluate drip irrigation filters (gravel, disk filter and their combination) for groundwater filtration. Water quality parameters responsible for emitter plugging, such as total solids, turbidity, Ca, Mg, CO3 and HCO3 were analyzed at the entry and exit points of filters. The filtration efficiency for water quality parameters was estimated with individual filters and in combination. Significant improvement was observed for turbidity, total solids, carbonate and bicarbonate. The filtration efficiency with combination filter was 14.3±8.8% for turbidity and 16.3±9.31% for bicarbonates. Gravel filter gave better results for filtration of bicarbonate in comparison to the disk filter. Emitters protected by the gravel media filter experienced the largest flow rate reductions but emitters protected by combination filters experienced least flow rate reduction. Backwashing of filters reduces the filtration efficiency and head loss. To reduce emitter plugging by removal of accumulated sediment, flushing of mains, submains and laterals are recommended. Higher improvement in uniformity coefficient was observed in subsurface drip after flushing operation. The results may be utilized in planning and design of subsurface drip irrigation system to diminish emitter clogging incidence.


1996 ◽  
Vol 6 (3) ◽  
pp. 155-159 ◽  
Author(s):  
Gary A. Clark ◽  
Allen G. Smajstrla

Proper design and installation are essential to provide a drip irrigation system that can be managed with minimal inputs and maximum profit. Because drip irrigation can apply precise amounts of water and chemicals, constraints associated with the plants, soil, water supply, and management must be considered in the design, installation, and management processes.


2021 ◽  
Vol 13 (20) ◽  
pp. 11178
Author(s):  
Marjan Aziz ◽  
Sultan Ahmad Rizvi ◽  
Muhammad Azhar Iqbal ◽  
Sairah Syed ◽  
Muhammad Ashraf ◽  
...  

Drip irrigation has long been proven beneficial for fruit and vegetable crops in Pakistan, but the only barrier in its adoption is the high cost of installation for small landholders, which is due to overdesigning of the system. In the present study, the cost of a conventional drip irrigation system was reduced by redesigning and eliminating the heavy filtration system (i.e., hydrocyclon, sand media, disc filters (groundwater source), pressure gauges, water meters, and double laterals).Purchasing the drip system from local vendors also reduced the cost. Field trials were conducted during 2015 and 2016 to observe the productive and economic effects of low-cost drip irrigation on vegetables (potato, onion, and chilies) and fruits (olive, peach, and citrus). The low-cost drip irrigation system saved 50% cost of irrigation and increased 27–54% net revenue in comparison with the furrow irrigation system. Further, water use efficiency (WUE) was found from 3.91–13.30 kg/m3 and 1.28–4.89 kg/m3 for drip irrigation and furrow irrigation systems, respectively. The physical and chemical attributes of vegetables and fruits were also improved to a reasonably good extent. The present study concluded that low-cost drip irrigation increased the yield by more than 20%, as compared with traditional furrow irrigation, and thus, it is beneficial for the small landholders (i.e., less than 2 hectares).


2012 ◽  
Vol 42 (4) ◽  
pp. 3-18 ◽  
Author(s):  
Nina Philipova ◽  
Olga Nicheva ◽  
Valentin Kazandjiev ◽  
Mila Chilikova-Lubomirova

Abstract A computer programhas been developed for design of surface drip irrigation system. It could be applied for calculation of small scale fields with an area up to 10 ha. The program includes two main parts: crop water requirements and hydraulic calculations of the system. It has been developed in Graphical User Interface in MATLAB and gives opportunity for selecting some parameters from tables such as: agro- physical soil properties, characteristics of the corresponding crop, climatic data. It allows the user of the program to assume and set a definite value, for example the emitter discharge, plot parameters and etc. Eight cases of system layout according to the water source layout and the number of plots of the system operation are laid into hydraulic section of the program. It includes the design of lateral, manifold, main line and pump calculations. The program has been compiled to work in Windows.


2021 ◽  
Vol 6 (3) ◽  
pp. 184
Author(s):  
Junita Br. Nambela ◽  
Krisna Margaretta Malau ◽  
Michel Koibur

Water plays the important roles for plants. Besides maintaining the cell turgidity, it also functions as a nutrients solvent for photosythesis process, which affects plant growth. This study aimed to determine the effects of the source and volume of irrigation water with drip irrigation system on the growth of pepper plants in polybags. This research was conducted at the green house of Polbangtan Manokwari, Anday, West Papua from June to October 2020. This research was arranged in a factorial Completely Randomized Design consisting of two treatment factors, namely irrigation water source (PDAM water and ground water) and volume (150 mL per plant, 200 mL per plant, and 250 mL per plant). The results showed that PDAM water showed a better effect than groundwater, while the volume of irrigation water applied to pepper plants had no significant effect on plant height, number of leaves, and stem diameter. This situation is thought to be due to genetic factors from the pepper cultivars grown. PDAM water has a better effect because of its high pH and higher content of Nitrite as N content. Also, it has lower temperature, lower TDS, and lower iron contents. Meanwhile, irrigation water volume of 250 mL per plant per day has a minimal risk of plant drought compared to other treatments.


Author(s):  
J.N. Abedalrahman ◽  
R.J. Mansor ◽  
D.R. Abass

A field experiment was carried out in the field of the College of Agriculture / University of Wasit, located on longitude  45o   50o   33.5o   East and latitude 32o 29o 49.8o North, in Spring season of the agricultural season 2019, in order to estimate the water consumption of potato crop using SWRT technology and under the drip irrigation system. The experiment was designed according to Randomized Complete Block Design (RCBD) with three replications and four treatments that include of the SWRT treatment (the use of plastic films under the plant root area in an engineering style), and the treatment of vegetal fertilizer (using Petmos), organic fertilizer (sheep manure), and the control treatment . Potato tubers (Solanum tuberosum L.)  var. Burin was planted for spring season on 10/2/2019 at the soil depth of 5-10 cm. The highest reference water consumption for the potato crop during the season was calculated by Najeeb Kharufa, which was 663.03 mm. The highest actual water consumption for the potato crop during the season for the control treatment was 410.1 mm. The results showed increase in the values of the crop coefficient (Kc) in the stages of tubers formation and tubers filling stage as compared to the vegetative and ripening stages, ranged from 1.37-1.92 for the two stages of tubers formation and tubers filling. The SWRT treatment gave the highest water use efficiency during the season, was 3.46 kg m-3 .


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 671f-671
Author(s):  
M. Marutani ◽  
R. Quitugua ◽  
C. Simpson ◽  
R. Crisostomo

A demonstration vegetable garden was constructed for students in elementary, middle and high schools to expose them to agricultural science. On Charter Day, a University-wide celebration, students were invited to the garden on the University campus. The purpose of this project was twofold: (1) for participants to learn how to make a garden and (2) for visitors to see a variety of available crops and cultural techniques. Approximately 30 vegetable crops were grown. The garden also presented some cultural practices to improve plant development, which included weed control by solarization, mulching, a drip irrigation system, staking, shading and crop cover. Different types of compost bins were shown and various nitrogen-fixing legumes were displayed as useful hedge plants for the garden.


Sign in / Sign up

Export Citation Format

Share Document