scholarly journals Evaluation of Stress-Relaxation in Fruit Tissue

1992 ◽  
Vol 2 (3) ◽  
pp. 398-402 ◽  
Author(s):  
Naoki Sakurai ◽  
Donald J. Nevins

During fruit softening, tissue texture characteristics may be documented by stress-relaxation analysis. Data were collected when a conical probe was inserted into tomato tissue to a prescribed depth. Five parameters were resolved during the load decay. By this method the elastic (firmness or softness) and viscous characteristics of the fruit tissue were identified. The initial load required to insert the probe into the fruit reflects tissue elasticity, while the two time-dependent parameters, one reflecting the initial response time and the other corresponding to the point when the tissue ceases to accommodate the imposed load, reflect tissue viscosity. The technique is also applicable for the measurement of processed materials, viz. canned tomatoes and paste, when modified probes are used.

1996 ◽  
Vol 121 (3) ◽  
pp. 380-383 ◽  
Author(s):  
E.V. Wann

Tissue firmness of ripe tomatoes is controlled by cell wall integrity of the fruit tissue and by the enzymatic softening that normally occurs during ripening. This study was conducted to determine the physical characteristics of cells and tissues of mature green (MG) and ripe fruit that might account for differences in firmness between `Rutgers' (normal), `Flora-Dade' (Firm), and two mutant lines called high-pigment (T4065 hp) and dark-green (T4099 dg), both of which possess extra firm fruit. Fruit samples were tested for resistance to a force applied to whole fruit and to sections of the pericarp tissue and by stress-relaxation analysis. Determinations were also made of cell density and cell wall content within the pericarp tissue. Fruit of mutant lines had firmer tissue than either `Rutgers' or `Flora-Dade' at MG or ripe. Whole fruit compression measurements showed that T4099 dg was firmer than T4065 hp or `Rutgers' at MG and firmer than `Flora-Dade' and `Rutgers' when ripe. Whole fruit of `Flora-Dade' were significantly firmer than `Rutgers' at MG and ripe. Firmness measured by compressive strength also showed that mutant lines had firmer pericarp tissue than the wild types at both MG and ripe stages. Stress-relaxation analysis showed that MG fruit of T4099 dg had greater tissue elasticity than `Rutgers' or `Flora-Dade'. Ripe fruit of both mutant lines had more tissue elasticity than wild types. There were no apparent differences among the genotypes due to tissue relaxation. From these analyses, tissue elasticity appears to be a significant parameter in determining tissue firmness in the tomato genotypes used in this study. Firmness and textural quality of ripe tomatoes appeared to be dependent on elasticity of the pericarp tissue and on the level of enzymatic softening during ripening.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3070
Author(s):  
Fernanda Bessa Ferreira ◽  
Paulo M. Pereira ◽  
Castorina Silva Vieira ◽  
Maria de Lurdes Lopes

Geosynthetic-reinforced soil structures have been used extensively in recent decades due to their significant advantages over more conventional earth retaining structures, including the cost-effectiveness, reduced construction time, and possibility of using locally-available lower quality soils and/or waste materials, such as recycled construction and demolition (C&D) wastes. The time-dependent shear behaviour at the interfaces between the geosynthetic and the backfill is an important factor affecting the overall long-term performance of such structures, and thereby should be properly understood. In this study, an innovative multistage direct shear test procedure is introduced to characterise the time-dependent response of the interface between a high-strength geotextile and a recycled C&D material. After a prescribed shear displacement is reached, the shear box is kept stationary for a specific period of time, after which the test proceeds again, at a constant displacement rate, until the peak and large-displacement shear strengths are mobilised. The shear stress-shear displacement curves from the proposed multistage tests exhibited a progressive decrease in shear stress with time (stress relaxation) during the period in which the shear box was restrained from any movement, which was more pronounced under lower normal stress values. Regardless of the prior interface shear displacement and duration of the stress relaxation stage, the peak and residual shear strength parameters of the C&D material-geotextile interface remained similar to those obtained from the conventional (benchmark) tests carried out under constant displacement rate.


2021 ◽  
Vol 24 ◽  
pp. S241
Author(s):  
A. Hebert ◽  
U. Kreaden ◽  
A. Yankovsky ◽  
S. Massachi ◽  
D. Guo ◽  
...  

2021 ◽  
Author(s):  
SIDDHESH S. KULKARNI ◽  
KAMRAN A. KHAN ◽  
REHAN UMER

Reinforcement compaction sometimes referred as consolidation process and is one of the key steps in various composite manufacturing processes such as autoclave and out-of-autoclave processing. The prepregs consist of semi-cured thermoset resin system impregnating the fibers. hence, the prepreg shows strong viscoelastic compaction response, which strongly depends on compaction speed and stress relaxation. modeling of time-dependent response is of utmost importance to understand the behavior of prepregs during different stages of composites manufacturing processes. The quasilinear viscoelastic (QLV) theory has been extensively used for the modeling of viscoelastic response of soft tissues in biomedical applications. In QLV approach, the stress relaxation can be expressed in terms of the nonlinear elastic function and the reduced relaxation function. The constitutive equation can be represented by a convolution integral of the nonlinear strain history, and reduced relaxation function. This study adopted a quasilinear viscoelastic modeling approach to describe the time dependent behavior of uncured-prepregs under compression. The model was modified to account for the compaction behavior of the prepreg under a compressive load. The deformation behavior of the prepreg is usually characterized by the fiber volume fraction, V . In this study, the material used was a 2/2 Twill weave glass prepreg (M26T) supplied by Hexcel® Industries USA. We performed a compaction experiment of the uncured prepreg at room temperature at different displacement rate and subsequent relaxation to describe the viscoelastic behavior of the prepreg. The model parameter calibration was performed using the trust-region-reflective algorithm in matlab to a selected number of test data. The calibrated model was then used to predict the rate dependent compaction and relaxation response of prepregs for different fiber volume fractions and strain rates.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
P. G. Pavan ◽  
P. Pachera ◽  
C. Stecco ◽  
A. N. Natali

The attention is focused on the viscoelastic behavior of human plantar aponeurosis tissue. At this purpose, stress relaxation tests were developed on samples taken from the plantar aponeurosis of frozen adult donors with age ranging from 67 to 78 years, imposing three levels of strain in the physiological range (4%, 6%, and 8%) and observing stress decay for 240 s. A viscohyperelastic fiber-reinforced constitutive model with transverse isotropy was assumed to describe the time-dependent behavior of the aponeurotic tissue. This model is consistent with the structural conformation of the tissue where collagen fibers are mainly aligned with the proximal-distal direction. Constitutive model fitting to experimental data was made by implementing a stochastic-deterministic procedure. The stress relaxation was found close to 40%, independently of the level of strain applied. The agreement between experimental data and numerical results confirms the suitability of the constitutive model to describe the viscoelastic behaviour of the plantar aponeurosis.


Sign in / Sign up

Export Citation Format

Share Document