scholarly journals Low-dose Application of Nonionic Alkyl Terminated Block Copolymer Surfactant Enhances Turfgrass Seed Germination and Plant Growth

2016 ◽  
Vol 26 (4) ◽  
pp. 379-385 ◽  
Author(s):  
Matthew D. Madsen ◽  
Michael A. Fidanza ◽  
Nicholas S. Barney ◽  
Stanley J. Kostka ◽  
Turmandakh Badrakh ◽  
...  

Rapid seed germination and vigorous seedling growth are desired when establishing turfgrass lawns from seed. Low-dose concentrations of nonionic, block copolymer surfactants can have a direct effect on plant physiological functions and growth. The objectives were to determine if a low-dose application of a nonionic alkyl ended block copolymer surfactant applied directly to the seed, within a film coating, would 1) influence speed, synchrony, and final germination percentage (FGP), and 2) enhance seedling emergence and the speed of turfgrass establishment under deficit irrigation. Tests were performed with tall fescue (Schedonorus arundinaceus) and perennial ryegrass (Lolium perenne). Surfactant was applied directly to the seed using a rotary seedcoater at 0.1% by weight of seed. In the first experiment, germination was compared between seeds with a surfactant film coating (SFC) and untreated seeds in growth chambers at three different constant temperatures (10, 20, and 30 °C). For both species, the SFC decreased the time for seed germination, and improved germination synchrony, with the greatest treatment response at 10 and 30 °C compared with untreated seed. Application of a SFC did not influence FGP. In the second experiment, untreated and treated seed were compared in a grow-room study, with pots watered weekly to 70% of field capacity (FC). Perennial ryegrass density, cover, and aboveground biomass from the SFC were ≈47%, 48%, and 46% greater than untreated seed, respectively. Tall fescue density, cover, and aboveground biomass from the SFC seeds were ≈22%, 23%, and 28% greater than untreated seed, respectively. Overall these studies demonstrate that SFC can promote seed germination and also enhance turfgrass establishment under deficit irrigation.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 490D-490 ◽  
Author(s):  
Hoon Kang ◽  
Chiwon W. Lee

The influence of increasing levels (0.0%, 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.2%, 1.6%, and 2.0%) of NaCl on the germination of Kentucky bluegrass (Poa pratensis), annual ryegrass (Lolium multiflorum), perennial ryegrass (Lolium perenne), creeping bentgrass (Agrostis palustris), tall fescue (Festuca arundinacea), and crested wheatgrass (Agropyron cristatum) was investigated. Kentucky bluegrass, creeping bentgrass, and crested wheatgrass had a 50% reduction in germination at 0.2%, 0.6%, and 0.6% NaCl, respectively, compared to the control and completely lost germination at 0.6%, 1.2%, and 1.6% NaCl, respectively. Seed germination in both annual ryegrass and perennial ryegrass was only 50% of the control at 1.2% NaCl and completely inhibited at 2.0% NaCl. Tall fescue, red fescue, and creeping red fescue showed a 50% reduction in germination at NaCl concentrations of 1.2%, 1.2%, and 0.8%, respectively, while showing a complete inhibition of germination at 2.0%, 2.0%, and 1.6% NaCl, respectively.


2009 ◽  
Vol 60 (11) ◽  
pp. 1071 ◽  
Author(s):  
J. S. Neal ◽  
W. J. Fulkerson ◽  
R. Lawrie ◽  
I. M. Barchia

Perennial ryegrass (Lolium perenne L.) is the dominant forage grazed by dairy cows in Australia; however, poor persistence has led to an increasing interest in alternative forages. This study was conducted to identify more productive and/or persistent perennial forage species than perennial ryegrass. We evaluated 15 perennial forages under optimum irrigation (I1) and 2 nominated deficit irrigation (I2, 66% of irrigation water applied to I1; I3, 33% of irrigation water applied to I1) regimes, over 3 years at Camden, NSW (34°3′S, 150°39′E), on a brown Dermosol in a warm temperate climate. The forages were: perennial ryegrass, cocksfoot (Dactylis glomerata L.), phalaris (Phalaris aquatica L.), prairie grass (Bromus catharticus M. Vahl), tall fescue (Schedonorus phoenix (Scop.) Holub), kikuyu (Pennisetum clandestinum Hochst. ex. chiov.), paspalum (Paspalum dilatatum Poir.), birdsfoot trefoil (Lotus corniculatus L.), lucerne (Medicago sativa L.), red clover (Trifolium pratense L.), strawberry clover (Trifolium fragiferum L.), sulla (Hedysarum coronarium L.), white clover (Trifolium repens L.), chicory (Cichorium intybus L.), and plantain (Plantago lanceolata L.). Under non-limiting conditions of water and fertility, tall fescue, kikuyu, and prairie grass had the highest mean annual yield over the 3 years of this experiment (24.8–25.5 t dry matter (DM)/ha), which was significantly greater (P < 0.05) than perennial ryegrass (21.1 t DM/ha). Kikuyu was significantly higher than all forages under the extreme I3 deficit irrigation treatment, with mean annual yields of 17.0 t DM/ha. In contrast, the mean yield of white clover was significantly lower (P < 0.05) than of any other forage at only 5.0 t DM/ha, a 70% decline in yield compared with I1. Lucerne was the most tolerant species to deficit irrigation, with a mean annual yield decline (P < 0.05) between the I1 and I3 treatment of only 22%. This study has shown that there are large differences in the relative yield potential of forages and, importantly, indicates the possibility of increasing yield of perennial forages by at least 2-fold on commercial farms, by improving water, and fertiliser management. However, while yield is an important criterion for choosing dairy forages, it is only one factor in a complex system, and choice of forages must be considered on a whole-farm basis and include water-use efficiency, nutritive value, costs of production, and risk.


2012 ◽  
Vol 26 (4) ◽  
pp. 789-792 ◽  
Author(s):  
Patrick E. McCullough ◽  
Diego Gómez De Barreda

Methiozolin selectively controls annual bluegrass in cool-season turfgrasses, and practitioners may wish to reseed desirable species in treated areas. Field experiments were conducted to evaluate reseeding intervals for creeping bentgrass, perennial ryegrass, and tall fescue following methiozolin applications. Turfgrass establishment varied for species, application timing (0, 2, 4, or 6 wk before seeding, WBS), and rates tested (0.56, 1.12, or 2.24 kg ai ha−1). Reductions in turf cover suggest that seeding of creeping bentgrass, perennial ryegrass, and tall fescue should be delayed 2 wk after methiozolin treatments at 0.56 kg ha−1. However, reseeding should be delayed after methiozolin treatments at 1.12 kg ha−1for approximately 4, 4, and 2 wk for creeping bentgrass, perennial ryegrass, and tall fescue, respectively. Similarly, establishment was reduced on all dates from the nontreated after 2.24 kg ha−1was applied at 4 WBS, suggesting that reseeding should be delayed for at least 6 wk on all three species at the high rate.


HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 682-687 ◽  
Author(s):  
Sophie Rochefort ◽  
Yves Desjardins ◽  
David J. Shetlar ◽  
Jacques Brodeur

Overseeding of tall fescue and perennial ryegrass into pre-existing stands of kentucky bluegrass is viewed as a strategy to enhance the quality and durability of turfgrass lawns. In a 3-year study, the authors investigated the winter survival and establishment of tall fescue (‘Bonsai 2000’), with or without Neotyphodium coenophialum, and perennial ryegrass (‘Palmer III’), with or without N. lolii, in the province of Quebec, Canada (≈lat., 54ºN), a region characterized by rigorous winter conditions. Grass species were overseeded in June 2003 at two different rates (90 and 180 kg·ha−1), in experimental plots from two bioclimatological conditions: Quebec City and Boucherville. Turfgrass establishment and endophyte infection were evaluated during the following two spring and fall periods. Both tall fescue and perennial ryegrass had the capacity to establish and survive winter conditions, but performed best when snow cover was thick and present throughout the winter. The proportion of overseeded plants in the turfgrass stand rarely reached 30% over the years. Although the proportion of tall fescue and perennial ryegrass plants was much reduced in the spring, some tillers survived and were able, later in the season, to compete with kentucky bluegrass as tall fescue and perennial ryegrass populations returned to initial establishment populations each summer in mixed stands. Overwinter endophyte survival was species specific, with N. lolii being able to survive the cold winter but not N. coenophialum, which had a low percent of infection. For the perennial ryegrass–N. lolii association, competition with kentucky bluegrass is a primary factor limiting the increase over time in the proportion of endophyte-infected plants in a turfgrass mixture. Seeding rates did not influence the establishment of either grass species.


HortScience ◽  
2013 ◽  
Vol 48 (10) ◽  
pp. 1313-1316 ◽  
Author(s):  
Diego Gómez de Barreda ◽  
Jialin Yu ◽  
Patrick E. McCullough

Grassy weeds may reduce cool-season turfgrass establishment after seeding and herbicide use is often warranted. Field experiments were conducted to evaluate the tolerance of creeping bentgrass (Agrostis stolonifera L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) to fenoxaprop and metamifop applications at 1, 2, 3, or 4 weeks after seeding (WAS). Creeping bentgrass groundcover was reduced from 34% to 71% at 8 WAS from the nontreated by fenoxaprop at 50 g a.i./ha and metamifop at 400 and 800 g a.i./ha at all application timings. Metamifop at 200 g·ha−1 reduced creeping bentgrass cover 10% to 18% from the nontreated at 8 WAS when applied 1, 2, or 3 WAS, but treatments at 4 WAS did not reduce cover. Perennial ryegrass treated with fenoxaprop and metamifop at 800 g·ha−1 at 1 WAS had cover reduced from the nontreated on two and one dates, respectively, whereas tall fescue cover was never reduced greater than 5% from the nontreated. Results suggest applications to creeping bentgrass should be delayed greater than 4 WAS for fenoxaprop at 50 g·ha−1, greater than 4 WAS for metamifop at 400 and 800 g·ha−1, and 3 WAS for metamifop at 200 g·ha−1. Additionally, fenoxaprop applications should be delayed 2 WAS for perennial ryegrass and tall fescue, whereas metamifop could be safely applied at all rates at 1 WAS.


Crop Science ◽  
1992 ◽  
Vol 32 (6) ◽  
pp. 1366-1370 ◽  
Author(s):  
W. W. Xu ◽  
David A. Sleper ◽  
S. Chao

1997 ◽  
Vol 11 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Clyde L. Elmore ◽  
Victor A. Gibeault ◽  
David W. Cudney

Overseeding established kikuyugrass swards with tall fescue or perennial ryegrass reduced kikuyugrass cover. Renovation prior to seeding did not aid in the establishment of these two species. Increasing the seeding rate from 79 to 157 kg/ha improved the establishment of perennial ryegrass but not tall fescue. When kikuyugrass plugs were introduced into established turf, tall fescue reduced the invasion of kikuyugrass stolons more than perennial ryegrass. Tall fescue reduced percent kikuyugrass cover, number and spread of stolons, and biomass (compared to perennial ryegrass). The newer turf-type tall fescue cultivars ‘Bonsai,’ ‘Falcon,’ and ‘Olympic’ were more effective than the older tall fescue cultivar ‘Fawn’ in reducing kikuyugrass invasion by reducing stolon number, stolon length, and biomass.


2010 ◽  
Vol 24 (4) ◽  
pp. 440-445 ◽  
Author(s):  
Daniel T. Earlywine ◽  
Reid J. Smeda ◽  
Travis C. Teuton ◽  
Carl E. Sams ◽  
Xi Xiong

Oriental mustard seed meal (MSM), a byproduct generated by pressing the seed for oil, exhibits herbicidal properties. In turfgrass, soil fumigants such as methyl bromide are used to control weeds prior to renovation of turf. Environmental concerns have resulted in deregistration of methyl bromide, prompting the need for alternatives. The objective of this research was to determine the effect of MSM on the establishment of selected turfgrass weeds as well as inhibitory effects on establishment of desirable turfgrasses. Greenhouse experiments were conducted in 2006 and 2007 at the University of Missouri. MSM was amended in soil at 0, 1,350 (low), 2,350 (medium), and 3,360 kg ha−1(high) concentrations. Weed species included annual bluegrass, large crabgrass, buckhorn plantain, white clover, and common chickweed. Turfgrass species included: Rembrandt tall fescue, Evening Shade perennial rye, and Riviera bermudagrass. All species were seeded into soil amended with MSM and either tarped or left untarped. All treatments were compared to dazomet (392 kg ha−1), a synthetic standard. Plant counts and biomass of all species were recorded 4 wk after seeding. Overall, tarped treatments suppressed weed emergence 27 to 50% more compared to untarped treatments, except for large crabgrass. High rates of MSM suppressed emergence of all weeds ≥ 63%. Compared to the untreated control, the density of buckhorn plantain, white clover, and common chickweed was reduced by ≥ 42% at low rates of MSM. Biomass of buckhorn plantain, annual bluegrass, common chickweed, white clover, and large crabgrass was reduced from 37 to 99% at high rates of MSM. MSM at high rates reduced stand counts of tall fescue and perennial ryegrass up to 81% and 77% respectively, compared to the untreated control. Regardless of MSM rates or tarping, suppression of common bermudagrass emergence did not exceed 30%; tarped treatments actually increased bermudagrass emergence by 22%. The biomass for tall fescue, perennial ryegrass, and bermudagrass was reduced by 85, 68, and 10%, respectively, at high rates of MSM. For tall fescue, MSM at all rates strongly suppressed seed germination by 7 d after planting (DAP) (up to 100%), with additional germination observed through 14 DAP, but not thereafter. In both trials, dazomet completely suppressed emergence of all weeds. MSM appears to suppress emergence and growth of a number of weeds common in turf, with potential selectivity for bermudagrass.


Sign in / Sign up

Export Citation Format

Share Document