scholarly journals In-furrow Starter Fertilization Enhances Growth and Maturity in Early Sweet Corn

1999 ◽  
Vol 9 (1) ◽  
pp. 132a
Author(s):  
John M. Swiader ◽  
William H. Shoemaker

Field studies were conducted in 1994 and 1995 to evaluate the effects of in-furrow-placed (i.e., applied directly in the seed channel) starter fertilizer on the emergence, maturity, and yield response of early sweet corn. In both years, three starter fertilizer treatments were applied: APP, with N and P at 13 and 19 kg·ha-1, respectively (13N-19P kg·ha-1), either banded (5 cm below and 5 cm to the side of the seed) or placed in-furrow, and a control (no starter fertilizer). Additionally, in 1995, the rate of APP was increased to supply 26N-38P kg·ha-1 in combination with either band (5 × 5 cm) or in-furrow placement. Seedling emergence was delayed whenever starter fertilizer was applied with the seed; however, significant reductions (≈21%) in plant stand occurred only at the high rate of in-furrow placement. In both years, all starter treatments had a positive effect on seedling dry-matter production, and hastened silking. In-furrow application of 13N-19P kg·ha-1 increased marketable ear yields 34% in 1995, but had no effect in 1994. Lack of yield response to the high rate of in-furrow fertilizer in 1995 was primarily a function of reduced stand, as ear number and ear mass per plant, and average ear size were similar to those in the other starter treatments. Based on these results, in-furrow APP at 13N-19P kg·ha-1 appears to be an effective starter fertilization regime for early sweet corn, comparable in effect to banded 26N-38P kg·ha-1. However, high rates of in-furrow APP may reduce stands. Although significant yield response to in-furrow starter fertilizer may not always be realized, the increased early seedling growth may itself be a benefit, since fast-growing seedlings are more likely to be tolerant of adverse environmental conditions than are less vigorous plants. Chemical name used: ammonium polyphosphate (APP).

HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1007-1010 ◽  
Author(s):  
John M. Swiader ◽  
William H. Shoemaker

Field studies were conducted in 1994 and 1995 to evaluate the effects of in-furrow-placed (i.e., applied directly in the seed channel) starter fertilizer on the emergence, maturity, and yield response of early sweet corn. In both years, three starter fertilizer treatments were applied: APP, with N and P at 13 and 19 kg·ha-1, respectively (13N—19P kg·ha-1), either banded (5 cm below and 5 cm to the side of the seed) or placed in-furrow, and a control (no starter fertilizer). Additionally, in 1995, the rate of APP was increased to supply 26N—38P kg·ha-1 in combination with either band (5 × 5 cm) or in-furrow placement. Seedling emergence was delayed whenever starter fertilizer was applied with the seed; however, significant reductions (≈21%) in plant stand occurred only at the high rate of in-furrow placement. In both years, all starter treatments had a positive effect on seedling dry-matter production, and hastened silking. In-furrow application of 13N—19P kg·ha-1 increased marketable ear yields 34% in 1995, but had no effect in 1994. Lack of yield response to the high rate of in-furrow fertilizer in 1995 was primarily a function of reduced stand, as ear number and ear mass per plant, and average ear size were similar to those in the other starter treatments. Based on these results, in-furrow APP at 13N—19P kg·ha-1 appears to be an effective starter fertilization regime for early sweet corn, comparable in effect to banded 26N—38P kg·ha-1. However, high rates of in-furrow APP may reduce stands. Although significant yield response to in-furrow starter fertilizer may not always be realized, the increased early seedling growth may itself be a benefit, since fast-growing seedlings are more likely to be tolerant of adverse environmental conditions than are less vigorous plants. Chemical name used: ammonium polyphosphate (APP).


1999 ◽  
Vol 13 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Lee R. Van Wychen ◽  
R. Gordon Harvey ◽  
Mark J. Vangessel ◽  
Thomas L. Rabaey ◽  
David J. Bach

Field studies were conducted at Arlington, WI, in 1996 and 1997 and at Georgetown, DE, and LeSueur, MN, in 1997 to determine weed control efficacy, crop injury, and yield response of PAT-transformed sweet corn to glufosinate-based weed management. Sequential applications of glufosinate 10 to 18 d apart at 0.4 and 0.3 kg ai/ha controlled common lambsquarters, common ragweed, velvetleaf, wild-proso millet, and fall panicum 90% or better at all locations. Weed control varied little among 0.3, 0.4, or 0.3 and 0.3 (sequential) kg/ha glufosinate rates. Glufosinate applied alone, with, or following atrazine controlled velvetleaf 90% or greater but was less consistent on common ragweed and common lambsquarters (73 to 100%). Atrazine plus metolachlor applied preemergence (PRE) and glufosinate applied alone postemergence (POST) provided inconsistent wild-proso millet and fall panicum control (43 to 99%). Metolachlor followed by glufosinate improved consistency of grass control (> 76%). Glufosinate followed by cultivation provided 80% or greater control of velvetleaf and wild-proso millet. Glufosinate did not injure or delay maturity of PAT-transformed sweet corn. Sweet corn treated with glufosinate resulted in yields greater than or equal to the sweet corn that was hand-weeded or received a standard herbicide treatment.


1989 ◽  
Vol 3 (3) ◽  
pp. 475-478 ◽  
Author(s):  
Mark A. Bennett ◽  
Stanley F. Gorski

Cold stress and field studies were conducted to determine the effects of alachlor, metolachlor, butylate plus dichlormid, and EPTC plus dichlormid on germination and seedling vigor of 30 sweet corn cultivars with three commercially important endosperm mutants (su, se, andsh2). Seedling emergence from cool soils was best when treated with EPTC plus dichlormid and alachlor and was decreased 11% by metolachlor and butylate plus dichlormid. Theseandsh2endosperm mutants were injured the most by the herbicides. Plant size was reduced by the thiocarbamate herbicides but not by the chloracetamides.


1991 ◽  
Vol 5 (1) ◽  
pp. 130-136 ◽  
Author(s):  
Cathy A. Morton ◽  
R. Gordon Harvey ◽  
James J. Kells ◽  
William E. Lueschen ◽  
Vincent A. Fritz

Field studies were conducted in Michigan, Minnesota, and Wisconsin to explore interactions among DPX-V9360 herbicide applied postemergence, terbufos insecticide applied as an in-furrow treatment, and the environment. Field corn (‘Pioneer 3751’) and sweet corn (‘Jubilee’) were planted with and without an in-furrow application of terbufos. DPX-V9360 was applied postemergence when the corn was in the 4- to 6-leaf stage at 0, 35, 70, 140, and 280 g ai ha-1with nonionic surfactant and 28% N fertilizer solution. Crop response to DPX-V9360 was similar at all three locations, varying only in magnitude of injury. Crop injury was greater with Jubilee sweet corn than with Pioneer 3751 field corn. Injury to both hybrids increased as DPX-V9360 application rate increased. Application of terbufos increased injury from DPX-V9360 to both hybrids. Significant yield reduction did not occur with either hybrid when DPX-V9360 was applied at rates of 140 g ha-1or less and no terbufos was applied.


2000 ◽  
Vol 80 (2) ◽  
pp. 419-423 ◽  
Author(s):  
J. O'Sullivan ◽  
P. H. Sikkema ◽  
R. J. Thomas

Eleven sweet corn cultivars were evaluated to identify cultivar sensitivity to nicosulfuron in three field studies, conducted over a 2-yr period. Response to nicosulfuron varied, depending on cultivar and application dose. DelMonte 2038 was highly sensitive to nicosulfuron, resulting in very severe injury and in most cases the death of all plants at both locations each year. At Exeter in 1997 and 1998, injury was slight, with no yield reductions on other cultivars. At Simcoe in 1998, five cultivars showed severe visual injury, especially at 50 g ha−1 of nicosulfuron; however, this did not always result in a significant yield reduction. Cultivars with a yield reduction were Elite, GH 1703 and Calico Belle. The cultivars Bonus Bt, Reveille, Krispy-King, GSS 7831 and GH 2690 were classified as fully tolerant to field applications of nicosulfuron showing injury of 5% or less at 25 g ha−1 and with no yield reduction. Key words: Sensitivity, herbicide injury, cultivars, nicosulfuron, Zea mays


1998 ◽  
Vol 78 (1) ◽  
pp. 151-154 ◽  
Author(s):  
J. O'Sullivan ◽  
W. J. Bouw

Sixteen processing sweet corn cultivars were evaluated to characterize cultivar sensitivity to nicosulfuron/rimsulfuron in field studies, conducted over a two-year period. Response to nicosulfuron/rimsulfuron varied widely, depending on cultivar and application rate. Delmonte 2038 was highly sensitive of nicosulfuron/rimsulfuron, resulting in the death of all plants. Nine cultivars showed moderate visual injury, but this did not always result in a significant yield reduction. Six cultivars were characterized as fully tolerant to field applications at rates of 25 g a.i. ha−1. These cultivars were Reveille, CNS 710, Krispy-King, Reward, More and GH 2628. Key words: Sensitivity, herbicide injury, cultivars, nicosulfuron, rimsulfuron, Zea mays


2017 ◽  
Vol 45 (2) ◽  
pp. 282-295
Author(s):  
R. Vihotogbé ◽  
C. Watson ◽  
R. Glèlè Kakaï ◽  
F. Wichern ◽  
B. Sinsin ◽  
...  

2020 ◽  
pp. 1-22
Author(s):  
Michael J. Walsh ◽  
Annie E. Rayner ◽  
Annie Rutledge ◽  
John C. Broster

Abstract Chaff lining and chaff tramlining are harvest weed seed control (HWSC) systems that involve the concentration of weed seed containing chaff material into narrow (20 to 30 cm) rows between or on the harvester wheel tracks during harvest. These lines of chaff are left intact in the fields through subsequent cropping seasons in the assumption that the chaff environment is unfavourable for weed seed survival. The chaff row environment effect on weed seed survival was examined in field studies, while chaff response studies determined the influence of increasing amounts of chaff on weed seedling emergence. The objectives of these studies were to determine 1) the influence of chaff lines on the summer-autumn seed survival of selected weed species; and 2) the influence of chaff type and amount on rigid ryegrass seedling emergence. There was frequently no difference (P>0.05) in survival of seed of four weed species (rigid ryegrass, wild oat, annual sowthistle and turnip weed) when these seed were placed beneath or beside chaff lines. There was one instance where wild oat seed survival was increased (P<0.05) when seed were placed beneath compared to beside a chaff line. The pot studies determined that increasing amounts of chaff consistently resulted in decreasing numbers of rigid ryegrass seedlings emerging through chaff material. The suppression of emergence broadly followed a linear relationship where there was approximately a 2.0% reduction in emergence with every 1.0 t ha-1 increase in chaff material. This relationship was consistent across wheat, barley, canola and lupin chaff types, indicating that the physical presence of the chaff was more important than chaff type. These studies indicated that chaff lines may not affect the over summer-autumn survival of the contained weed seeds but the subsequent emergence of weed seedlings will be restricted by high amounts of chaff (>40 t ha-1).


2020 ◽  
Vol 145 (6) ◽  
pp. 331-339
Author(s):  
Kirsten L. Lloyd ◽  
Donald D. Davis ◽  
Richard P. Marini ◽  
Dennis R. Decoteau

Effects of nighttime (2000 to 0700 hr) O3 on the pod mass of sensitive (S156) and resistant (R123) snap bean (Phaseolus vulgaris) genotypes were assessed using continuous stirred tank reactors located within a greenhouse. Two concentration-response relationship trials were designed to evaluate yield response to nighttime O3 exposure (10 to 265 ppb) in combination with daytime exposure at background levels (44 and 62 ppb). Three replicated trials tested the impact of nighttime O3 treatment at means of 145, 144, and 145 ppb on yields. In addition, stomatal conductance (gS) measurements documented diurnal variations and assessed the effects of genotype and leaf age. During the concentration-response experiments, pod mass had a significant linear relationship with the nighttime O3 concentration across genotypes. Yield losses of 15% and 50% occurred at nighttime exposure levels of ≈45 and 145 ppb, respectively, for S156, whereas R123 yields decreased by 15% at ≈150 ppb. At low nighttime O3 levels of ≈100 ppb, R123 yields initially increased up to 116% of the treatment that received no added nighttime O3, suggesting a potential hormesis effect for R123, but not for S156. Results from replicated trials revealed significant yield losses in both genotypes following combined day and night exposure, whereas night-only exposure caused significant decreases only for S156. The gS rates ranged from less than 100 mmol·m−2·s−1 in the evening to midday levels more than 1000 mmol·m−2·s−1. At sunrise and sunset, S156 had significantly higher gS rates than R123, suggesting a greater potential O3 flux into leaves. Across genotypes, younger rapidly growing leaves had higher gS rates than mature fully expanded leaves when evaluated at four different times during the day. Although these were long-term trials, gS measurements and observations of foliar injury development suggest that acute injury, occurring at approximately the time of sunrise, also may have contributed to yield losses. To our knowledge, these are the first results to confirm that the relative O3 sensitivity of the S156/R123 genotypes is valid for nighttime exposure.


Sign in / Sign up

Export Citation Format

Share Document