Enhancement of Seedling Emergence in Sweet Corn by Marker-Assisted Backcrossing of Beneficial QTL

Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 96 ◽  
Author(s):  
Gad G. Yousef ◽  
John A. Juvik
HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1110f-1110
Author(s):  
Nancy W. Callan ◽  
James B. Miller ◽  
Don E. Mathre

Shrunken-2 supersweet (sh2) sweet corn is susceptible to preemergence damping-off caused by Pythium ultimum, especially when planted into cold soil. Bio-priming, a seed treatment which combines the establishment of a bioprotectant on the seed with preplant seed hydration, was developed to protect seeds from damping-off.In a series of field experiments conducted in Montana's Bitterroot and Gallatin Valleys, bio-priming or seed bacterization with Pseudomonas fluorescens AB254 protected sweet corn from P. ultimum damping-off. Bio-priming corn seed with P. fluorescens AB254 was comparable to treatment with the fungicide metalaxyl in increasing seedling emergence. Seedlings from bio-primed seeds emerged from the soil more rapidly than from nontreated seeds and were larger at three weeks postplanting. Seeds of sh 2 and sugary enhancer (se) sweet corn, as well as that of several sh 2 cultivars, were protected from damping-off by bio-priming.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1007-1010 ◽  
Author(s):  
John M. Swiader ◽  
William H. Shoemaker

Field studies were conducted in 1994 and 1995 to evaluate the effects of in-furrow-placed (i.e., applied directly in the seed channel) starter fertilizer on the emergence, maturity, and yield response of early sweet corn. In both years, three starter fertilizer treatments were applied: APP, with N and P at 13 and 19 kg·ha-1, respectively (13N—19P kg·ha-1), either banded (5 cm below and 5 cm to the side of the seed) or placed in-furrow, and a control (no starter fertilizer). Additionally, in 1995, the rate of APP was increased to supply 26N—38P kg·ha-1 in combination with either band (5 × 5 cm) or in-furrow placement. Seedling emergence was delayed whenever starter fertilizer was applied with the seed; however, significant reductions (≈21%) in plant stand occurred only at the high rate of in-furrow placement. In both years, all starter treatments had a positive effect on seedling dry-matter production, and hastened silking. In-furrow application of 13N—19P kg·ha-1 increased marketable ear yields 34% in 1995, but had no effect in 1994. Lack of yield response to the high rate of in-furrow fertilizer in 1995 was primarily a function of reduced stand, as ear number and ear mass per plant, and average ear size were similar to those in the other starter treatments. Based on these results, in-furrow APP at 13N—19P kg·ha-1 appears to be an effective starter fertilization regime for early sweet corn, comparable in effect to banded 26N—38P kg·ha-1. However, high rates of in-furrow APP may reduce stands. Although significant yield response to in-furrow starter fertilizer may not always be realized, the increased early seedling growth may itself be a benefit, since fast-growing seedlings are more likely to be tolerant of adverse environmental conditions than are less vigorous plants. Chemical name used: ammonium polyphosphate (APP).


Euphytica ◽  
2018 ◽  
Vol 214 (8) ◽  
Author(s):  
Ruichun Yang ◽  
Zhiguang Yan ◽  
Qingfeng Wang ◽  
Xiaoqin Li ◽  
Faqiang Feng

2013 ◽  
Vol 35 (3) ◽  
pp. 340-346 ◽  
Author(s):  
Renata Oliveira Alvarenga ◽  
Julio Marcos-Filho ◽  
Tathiana Silva Timóteo

The assessment of physiological potential is essential in seed quality control programs. This study compared the sensitivity of different procedures for evaluating super sweet corn seed vigor, focusing on the primary root protrusion test. Six seed lots, each of the SWB 551 and SWB 585 hybrids, were used. Seed physiological potential was evaluated by germination and vigor tests (speed of germination, traditional and saturated salt accelerated aging, cold test, seedling length, seedling emergence and primary root protrusion). Primary root protrusion was evaluated every 12 hours at 15 °C, 20 °C and 25 °C using two criteria (primary root protrusion and seedlings at the 2 mm root stage). It was concluded that the primary root protrusion test at 15 °C can evaluate super sweet corn seed vigor by counting the number of seedlings at the 2 mm root stage.


1999 ◽  
Vol 9 (1) ◽  
pp. 132a
Author(s):  
John M. Swiader ◽  
William H. Shoemaker

Field studies were conducted in 1994 and 1995 to evaluate the effects of in-furrow-placed (i.e., applied directly in the seed channel) starter fertilizer on the emergence, maturity, and yield response of early sweet corn. In both years, three starter fertilizer treatments were applied: APP, with N and P at 13 and 19 kg·ha-1, respectively (13N-19P kg·ha-1), either banded (5 cm below and 5 cm to the side of the seed) or placed in-furrow, and a control (no starter fertilizer). Additionally, in 1995, the rate of APP was increased to supply 26N-38P kg·ha-1 in combination with either band (5 × 5 cm) or in-furrow placement. Seedling emergence was delayed whenever starter fertilizer was applied with the seed; however, significant reductions (≈21%) in plant stand occurred only at the high rate of in-furrow placement. In both years, all starter treatments had a positive effect on seedling dry-matter production, and hastened silking. In-furrow application of 13N-19P kg·ha-1 increased marketable ear yields 34% in 1995, but had no effect in 1994. Lack of yield response to the high rate of in-furrow fertilizer in 1995 was primarily a function of reduced stand, as ear number and ear mass per plant, and average ear size were similar to those in the other starter treatments. Based on these results, in-furrow APP at 13N-19P kg·ha-1 appears to be an effective starter fertilization regime for early sweet corn, comparable in effect to banded 26N-38P kg·ha-1. However, high rates of in-furrow APP may reduce stands. Although significant yield response to in-furrow starter fertilizer may not always be realized, the increased early seedling growth may itself be a benefit, since fast-growing seedlings are more likely to be tolerant of adverse environmental conditions than are less vigorous plants. Chemical name used: ammonium polyphosphate (APP).


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 610e-610
Author(s):  
Vincent A. Fritz ◽  
Gyles W. Randall ◽  
Carl J. Rosen

Sweet corn silage waste is ≈18% dry matter and contains 1.2% N and 0.26% P on a dry-weight basis. Silage waste in rates of 0 to 448 T·ha–1 was applied to a previously harvested sweet corn field in late summer. Beginning the following spring, soil samples were periodically collected to follow the rate of N mineralization. Field corn was planted to the site the following spring as the test crop. At harvest, grain, stover, and silage yields were recorded and N removal from the system was followed through grain and tissue sampling. Additional studies were also conducted to evaluate the impact of primary tillage method on subsequent N mobilization from sweet corn silage waste and to assess the residual N release potential beyond the first year following silage waste application. Results suggest that land application of sweet corn silage waste at 224 T·ha–1 would be environmentally responsible, provided that adequate nitrogen credit from the silage waste is integrated into the total nitrogen needs of the subsequent crop. Greater mineralization is achieved when the silage waste is moldboard plowed compared to chisel plowing. Chisel plowing could result in greater residual N carryover during the year following silage waste application. Seedling emergence rates were faster and grain yield was superior in some years in moldboard-plowed plots compared to chisel-plowed plots. Further calibration of additional N fertilizer on land that received silage waste is necessary for improved production efficiency and sweet corn silage waste use in production systems.


1989 ◽  
Vol 3 (3) ◽  
pp. 475-478 ◽  
Author(s):  
Mark A. Bennett ◽  
Stanley F. Gorski

Cold stress and field studies were conducted to determine the effects of alachlor, metolachlor, butylate plus dichlormid, and EPTC plus dichlormid on germination and seedling vigor of 30 sweet corn cultivars with three commercially important endosperm mutants (su, se, andsh2). Seedling emergence from cool soils was best when treated with EPTC plus dichlormid and alachlor and was decreased 11% by metolachlor and butylate plus dichlormid. Theseandsh2endosperm mutants were injured the most by the herbicides. Plant size was reduced by the thiocarbamate herbicides but not by the chloracetamides.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 743b-743
Author(s):  
Nancy W. Callan ◽  
Don E. Mathre ◽  
James B. Miller

Penicillium oxalicum is a seed- and soilborne fungal pathogen that causes preemergence damping-off and postemergence seedling blight of sweet corn, While seed infection and infestation by P. oxalicum is common, the amount of injury observed in the field is variable. Our objective was to determine factors influencing the occurrence and severity of disease due to P. oxalicum. Inoculation of sh-2 sweet corn seeds with conidia of P. oxalicum reduced seedling emergence and resulted in seedling mortality. Disease severity in the greenhouse and the field was greater as inoculum density increased from ≈ 102 to 106 conidia per seed. Increasing soil temperatures after planting inoculated seed resulted in more preemergence damping-off. Penicillium oxalicum is capable of growth and sporulation in soil that is too dry for seed germination. Nontreated (naturally infected) sh-2 sweet corn seeds or seeds inoculated with P. oxalicum were incubated in pasteurized soil that had been adjusted to various moisture levels-all too low for seed germination. Increasing soil moisture was associated with visible growth of Penicillium spp. on seed after incubation, and greater levels of damping-off and seedling blight when the seed was planted.


Sign in / Sign up

Export Citation Format

Share Document