scholarly journals Breeding and Evaluation of Fine Fescues for Increased Tolerance to Mesotrione Herbicide

2021 ◽  
pp. 1-12
Author(s):  
Trent M. Tate ◽  
Stacy A. Bonos ◽  
William A. Meyer

Fine fescues (Festuca sp.) are a group of species that require fewer inputs, such as fertilizer, than other cool-season species managed for turf. They are adapted to infertile, acidic soils; shade; and drought. One area that poses additional challenges is the lack of weed control options for fine fescues during establishment from seed. Mesotrione is a herbicide that provides preemergence control of many broadleaf and grassy weeds, such as annual bluegrass (Poa annua), but is currently not labeled for use in fine fescues at seeding. The objectives of this research were 1) to use a recurrent selection technique to develop mesotrione-tolerant chewings fescue (Festuca rubra ssp. commutata), hard fescue (Festuca brevipila), and strong creeping red fescue (F. rubra spp. rubra); and 2) to conduct field trials to compare the new selections to commercially available cultivars and experimental lines not selected for tolerance to mesotrione. Progress was made after each of the three generations of recurrent selection. The top statistical grouping of entries for injury following application of mesotrione at the 8-oz/acre rate included all the third-generation (G3) hard fescues, all the G3 chewings fescues, and the G3 strong creeping red fescue STB1 Composite. After three generations, selections of hard, chewings, and strong creeping red fescues had equivalent or better tolerance to mesotrione than tall fescue (Festuca arundinacea) and kentucky bluegrass (Poa pratensis) cultivars, which are on the label for safe use at seeding. These new selections would provide turf managers an option to control weeds using mesotrione during seedling establishment of fine fescues.

Weed Science ◽  
1977 ◽  
Vol 25 (6) ◽  
pp. 487-491 ◽  
Author(s):  
S.W. Bingham

Yellow nutsedge (Cyperus esculentusL.) control with herbicides was evaluated with and without competition from turfgrasses. Postemergence applications of cyperquat (1-methyl-4-phenylpryidinium) provided safe selective control of yellow nutsedge in Kentucky bluegrass (Poa pratensisL. ‘Merion’), perennial ryegrass (Lolium perenneL. ‘Manhatten’), and red fescue (Festuca rubraL. ‘Pennlawn’). Pre- and post-emergence applications of perfluidone {1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl] methanesulfonamide} controlled yellow nutsedge when rainfall or irrigation was adequate for good turfgrass growth. Under dry conditions, perfluidone slightly injured Kentucky bluegrass and gave poor control of yellow nutsedge. Bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-(4)3H-one2,2-dioxide] was less effective than cyperquat or perfluidone for yellow nutsedge control and required split applications. Bentazon did not injure Kentucky bluegrass. Napropamide [2-(α-naphthoxy)-N,N-diethylpropionamide] and Vel 3973 [N-(2,4-dimethyl-5-{[(trifluoromethyl)sulfonyl]amino}phenyl)acetamide] did not provide adequate yellow nutsedge control. Vel 5052 {2-chloro-N-(2,6-dimethyl-phenyl-N-[(1,3-dioxolan-2-yl)methyl] acetamide}showed promise for yellow nutsedge control.


Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Hideo Hosaka ◽  
Hideo Inaba ◽  
Hisao Ishikawa

Postemergence applications of BAS 9052 OH, {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one}, at 0.25 and 0.5 kg ai/ha were made to 27 temperate and 28 tropical species ofGramineae. Annual bluegrass (Poa annuaL. ♯3POAAN) and rattail fescue (Festuca myurosL. ♯ VLPMY) were resistant to these rates of BAS 9052 OH. Five species of fescue and three species of bluegrass received postemergence applications of BAS 9052 OH at rates of 0.1 to 6.4 kg ai/ha. The germination of seeds and the subsequent growth of the seedlings of these species as influenced by various concentrations of BAS 9052 OH were also studied. Meadow fescue (Festuca pratensisHuds. ♯ FESPR), tall fescue (Festuca arundinaceaSchreb. ♯ FESAR), Kentucky bluegrass (Poa pratensisL. ♯ POAPR), and rough-stalked meadowgrass (Poa trivialisL. ♯ POATR) were most susceptible; annual bluegrass was somewhat less resistant; hard fescue (Festuca longifoliaThuill) was resistant; red fescue (Festuca rubraL. ♯ FESRU) and rattail fescue were very resistant.


1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


Weed Science ◽  
1987 ◽  
Vol 35 (1) ◽  
pp. 95-98 ◽  
Author(s):  
Prasanta C. Bhowmik

A red fescue (Festuca rubraL.)- Kentucky bluegrass (Poa pratensisL.) turf was treated annually with amidochlor {N-[(acetylamino)methyl]-2-chloro-N-(2,6-diethylphenyl)acetamide} at 2.2, 2.8, and 3.4 kg ai/ha, mefluidide {N-[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl] amino] phenyl] acetamide} at 0.4 kg ai/ha, and ethephon [(2-chloroethyl) phosphonic acid] at 5.6 kg ai/ha for three consecutive years. Recuperative potential of treated turfgrass was determined in the field and in a greenhouse study. Amidochlor and mefluidide treatments injured turfgrass (11 to 64%) four weeks after application. However, turfgrass recovered after eight weeks. Amidochlor at 2.8 to 3.4 kg/ha and mefluidide at 0.4 kg/ha suppressed (75 to 100%) seedhead development. Ethephon at 5.6 kg/ha was ineffective. Turfgrass recovered normally each spring after amidochlor treatments, with no delay in spring green-up. Root length, root weight, and root:shoot weight ratio of the plugs from the greenhouse study were unaffected by three consecutive annual applications of amidochlor, mefluidide, and ethephon. One annual spring application of amidochlor, mefluidide, and ethephon for three consecutive years caused no adverse effects that would limit their use on red fescue-Kentucky bluegrass turf.


Weed Science ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 421-423
Author(s):  
J. M. Hodgson

Herbicides were evaluated for selectivity between three tall coarse grasses and three short fine grasses. Reed canarygrass (Phalaris arundinaceaL.), quackgrass [Agropyron repens(L.) Beauv.], and smooth brome (Bromus inermisLeyss) were consistently more susceptible to amitrole-NH4CN (3-amino-s-triazole-ammonium thiocyanate) than three desirable short grasses, Kentucky bluegrass (Poa pratensisL.), creeping red fescue (Festuca rubraL.), and redtop (Agrostis albaL.). Reed canarygrass and redtop were more susceptible to dalapon (2,2-dichloropropionic acid) than creeping red fescue. Amitrole-NH4CN and dalapon combinations were more toxic to reed canarygrass, smooth brome, and redtop than creeping red fescue. Pyriclor (2,3,5-trichloro-4-pyridinol) was quite toxic to all grasses with Kentucky bluegrass showing the most tolerance. When TCA (trichloroacetic acid) was combined with amitrole-NH4CN results were similar to the dalapon combination but overall toxicity was reduced.


2017 ◽  
Vol 2 (3) ◽  
pp. 162-170
Author(s):  
Kenneth Lynn Diesburg ◽  
Ronald F. Krausz

This research was conducted to determine the degree of success, by month, in seeding establishment of tall fescue (Festuca arundinacea Schreb., Kentucky bluegrass (Poa pratensis L.), Bermudagrass (Cynodon dactylon [L.] Pers. var. dactylon), and zoysiagrass (Zoysia japonica Steud.) at two locations in the moist, Midwest, continental transition zone on a prepared seed bed without irrigation or cover. The four species were planted every month of the year starting in September 2005. Starter fertilizer and siduron were applied the same day as seeding with no subsequent management except mowing. Percent cover of living turfgrass was recorded in each of 24 months after seeding. Tall fescue (80%) and Bermudagrass (73%) provided the best percent cover over all planting dates. Kentucky bluegrass provided 65% and zoysiagrass 24% cover. The cool-season grasses performed best in the July-to-March plantings; tall fescue 88% and Kentucky bluegrass 72%. Bermudagrass (94%) established best in the January-to-April plantings, while Zoysiagrass (32%) established best in the November-to-March plantings. Germination and seedling survival after germination of all species were inhibited by limited moisture during summer. The warm-season grasses were further limited by winter kill in the August, September, and October seedings. These results emphasize the risk in spring-seeding as well as the value in dormant-seeding of both warm- and cool-season turfgrasses for low-input, nonirrigated establishment.


2001 ◽  
Vol 11 (1) ◽  
pp. 152a
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turf-grasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


2002 ◽  
Vol 12 (3) ◽  
pp. 465-469 ◽  
Author(s):  
D.S. Gardner ◽  
J.A. Taylor

In 1992, a cultivar trial was initiated in Columbus, Ohio to evaluate differences in establishment and long-term performance of cultivars of tall fescue (Festuca arundinacea), creeping red fescue (F. rubra), chewings fescue (F. rubra ssp. fallax), hard fescue (F. brevipila), kentucky bluegrass (Poa pratensis), rough bluegrass (P. trivialis), and perennial ryegrass (Lolium perenne) under low maintenance conditions in a shaded environment. Fertilizer and supplemental irrigation were applied until 1994 to establish the grasses, after which no supplemental irrigation, or pesticides were applied and fertilizer rates were reduced to 48.8 kg·ha-1 (1 lb/1000 ft2) of N per year. Percentage cover and overall quality data were collected in 2000 and compared with data collected in 1994. Initial establishment success does not appear to be a good predictor of long-term success of a cultivar in a shaded environment. There was some variability in cultivar performance under shade within a given turfgrass species. The tall fescue cultivars, as a group, had the highest overall quality and percentage cover under shade, followed by the fine fescues, kentucky bluegrass, rough bluegrass, and perennial ryegrass cultivars.


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1166-1169 ◽  
Author(s):  
Zachary J. Reicher ◽  
Clark S. Throssell ◽  
Daniel V. Weisenberger

Little documentation exists on the success of seeding cool-season turfgrasses in the late fall, winter and spring. The objectives of these two studies were to document the success of seeding Kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), and tall fescue (Festuca arundinacea Schreb.) at less-than-optimum times of the year, and to determine if N and P fertilizer requirements vary with seeding date of Kentucky bluegrass. `Ram I' Kentucky bluegrass, `Fiesta' perennial ryegrass, and `Mustang' tall fescue were seeded on 1 Sept., 1 Oct., 1 Nov., 1 Dec., 1 Mar., 1 Apr., and 1 May ± 2 days beginning in 1989 and 1990. As expected, the September seeding date produced the best establishment, regardless of species. Dormant-seeding Kentucky bluegrass and tall fescue in November, December, or March reduced the establishment time compared with seeding in April or May. Seeding perennial ryegrass in November, December, or March may not be justified because of winterkill potential. To determine the effect of starter fertilizer on seedings made at different times of the year, `Ram 1' Kentucky bluegrass was seeded 1 Sept., 1 Nov., 1 Mar., and 1 May ± 2 days in 1989 and 1990, and the seedbed was fertilized with all combinations of rates of N (0, 24, and 48 kg·ha-1) and P (0, 21, and 42 kg·ha-1). Fertilizer rate had no effect on establishment regardless of seeding date, possibly because of the fertile soil on the experimental site.


Sign in / Sign up

Export Citation Format

Share Document