scholarly journals Water Deficits and Environmental Factors Affect Photosynthesis in Leaves of Cucumber (Cucumis sativus)

1993 ◽  
Vol 118 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Abdul K. Janoudi ◽  
Irvin E. Widders ◽  
James A. Flore

Cucumber plants were cultured in a greenhouse and subjected to either well-watered or water deficit conditions that reduced leaf water potential to-0.6 MPa. Leaf gas exchange measurements were conducted using an open gas exchange system. Carbon dioxide assimilation (A) attained saturation at a photon flux density (PFD) of 1000 μmol·m-2·s-1 (400-700 nm). There were no significant differences in A at ambient temperatures between 16 and 34C. Water use efficiency decreased rapidly with increasing vapor-pressure deficits to 2.5 kPa. Water stressed plants had lower stomata1 conductances and CO2 assimilation rates. The decrease in A was only partially due to stomata1 closure. The A vs. intercellular CO (Ci) relationship for stressed leaves revealed a change in the CO, compensation point, and that nonstomatal factors were contributing to the decrease in A in stressed plants. Thus, feedback inhibition of A may have occurred through photoassimilate accumulation. The concentrations of sucrose and raffinose were higher, and the concentration of stachyose was lower in leaves of stressed than of well-watered plants.

1980 ◽  
Vol 10 (3) ◽  
pp. 429-435 ◽  
Author(s):  
R. Ceulemans ◽  
I. Impens

Different ecophysiological characteristics of various Populus clones (maximum net CO2 uptake rate, apparent quantum yield, photon flux density compensation point, boundary layer resistance, and stomatal and internal resistances to carbon dioxide and water use efficiency) were studied using a gas exchange method. Most significant differences were found in the water use efficiency ratios, the internal resistances to carbon dioxide and the maximum net CO2 uptake rates. Recently selected interamerican Populustrichocarpa crossings (Populus clones Unal, Beaupré, and Trichobel) showed high water use efficiency, high maximum net CO2 uptake rates, and low internal resistances.


2006 ◽  
Vol 42 (2) ◽  
pp. 147-164 ◽  
Author(s):  
J. C. RONQUIM ◽  
C. H. B. A. PRADO ◽  
P. NOVAES ◽  
J. I. FAHL ◽  
C. C. RONQUIM

Three cultivars of Coffea arabica, Catuaí Vermelho IAC 81, Icatu Amarelo IAC 2944 and Obatã IAC 1669–20, were evaluated in relation to leaf gas exchange and potential photochemical efficiency of photosystem II under field conditions on clear and cloudy days in the wet season in southeast Brazil. Independent of levels of irradiance, leaf water potential (υleaf) values were always higher than the minimum required to affect daily net photosynthesis (PN). PN, stomatal conductance (gs), leaf transpiration (E) and the index of photochemical efficiency (Fv/Fm) declined on a clear day in all cultivars. The depression of leaf gas exchange and Fv/Fm (specially around midday) caused a strong decrease (about 70 %) in daily carbon gain on a clear day. Under cloudless conditions, gs and PN were correlated with the air vapour pressure deficit (VPDair), but not with photosynthetic photon flux density (PPFD) values. On a cloudy day, the daily carbon gain was barely limited by PPFD below 800 μmol m−2 s−1, the Fv/Fm values showed a slight decrease around midday, and gs and PN were positively correlated with PPFD but not with VPDair. By contrast, irrespective of the contrasting irradiance conditions during the day, PN and E were correlated with gs.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 127
Author(s):  
Richard M. Bastías ◽  
Pasquale Losciale ◽  
Camilla Chieco ◽  
Luca Corelli-Grappadelli

There is little information about the role of red and blue light on leaf morphology and physiology in fruit trees, and more studies have been developed in herbaceous plants grown under controlled light conditions. The objective of this research was to evaluate the effect of red and blue screens on morpho-anatomy and gas exchange in apple leaves grown under ambient sunlight conditions. Apple trees cv. Fuji were covered by 40% red and blue nets, leaving trees with 20% white net as control. Light relations (photosynthetic photon flux density, PPFD; red to far-red light ratio, R/FR and blue to red light ratio, B/R), morpho-anatomical features of the leaf (palisade to spongy mesophyll ratio, P/S, and stomata density, SD) and leaf gas exchange (net photosynthesis rate, An; stomatal conductance, gs; transpiration rate, E; and intrinsic water use efficiency, IWUE) were evaluated. Red and blue nets reduced 27% PPFD, reducing by 20% SD and 25% P/S compared to control, but without negative effects on An and gs. Blue net increased gs 21%, leading to the highest E and lowest IWUE by increment of B/R light proportion. These findings demonstrate the potential use of red and blue nets for differential modulation of apple leaf gas exchange through sunlight management under field conditions.


2014 ◽  
Vol 65 (2) ◽  
pp. 268-276 ◽  
Author(s):  
S. Poni ◽  
M. C. Merli ◽  
E. Magnanini ◽  
M. Galbignani ◽  
F. Bernizzoni ◽  
...  

OENO One ◽  
1998 ◽  
Vol 32 (2) ◽  
pp. 91
Author(s):  
Francesco Iacono ◽  
Lucia Martinelli

<p style="text-align: justify;">The influence of genotype on leaf gas exchange was investigated for <em>Vitis riparia</em> and <em>Vitis rupestris</em> plants cultured <em>in vivo</em> and <em>in vitro</em>. Gas exchange was measured at constant temperature and photosynthetic photon flux density and at varying relative humidity from 75 p. cent to 65 p. cent.</p><p style="text-align: justify;">Differences of transpiration and CO<sub>2</sub> assimilation rates between genotypes were observed that did not depend upon conditions. Water use efficiency was strongly controlled by the genotype.</p><p style="text-align: justify;">Linear correlations between assimilation, transpiration and relative humidity were used to estimate extra stomatal (cuticular) and stomatal transpiration of <em>in vitro</em> plants. Cuticular transpiration of in vitro plants was also measured directly during the darkness. Our results confirmed the indirect estimates of cuticular transpiration elaborated with a linear regression model. Results also show that cuticular transpiration of <em>in vitro</em> grown plants may be relevant and is strongly influenced by the genotype. Similarly, the sensitivity of plantlets to transplantation from <em>in vitro</em> to <em>in vivo</em> conditions may be strongly related by the genotype.</p>


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 663
Author(s):  
James Bunce

Attempts to identify crop genetic material with larger growth stimulation at projected elevated atmospheric CO2 concentrations are becoming more common. The probability of reductions in photosynthesis and yield caused by short-term variation in CO2 concentration within elevated CO2 treatments in the free-air CO2 enrichment plots raises the question of whether similar effects occur in glasshouse or indoor chamber experiments. These experiments were designed to test whether even the normal, modest, cyclic variation in CO2 concentration typical of indoor exposure systems have persistent impacts on photosynthesis and growth, and to explore mechanisms underlying the responses observed. Wheat, cotton, soybeans, and rice were grown from seed in indoor chambers at a mean CO2 concentration of 560 μmol mol−1, with “triangular” cyclic variation with standard deviations of either 4.5 or 18.0 μmol mol−1 measured with 0.1 s sampling periods with an open path analyzer. Photosynthesis, stomatal conductance, and above ground biomass at 20 to 23 days were reduced in all four species by the larger variation in CO2 concentration. Tests of rates of stomatal opening and closing with step changes in light and CO2, and tests of responses to square-wave cycling of CO2 were also conducted on individual leaves of these and three other species, using a leaf gas exchange system. Reduced stomatal conductance due to larger amplitude cycling of CO2 during growth occurred even in soybeans and rice, which had equal rates of opening and closing in response to step changes in CO2. The gas exchange results further indicated that reduced mean stomatal conductance was not the only cause of reduced photosynthesis in variable CO2 conditions.


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1416-1422 ◽  
Author(s):  
Giverson Mupambi ◽  
Stefano Musacchi ◽  
Sara Serra ◽  
Lee A. Kalcsits ◽  
Desmond R. Layne ◽  
...  

Globally, apple production often occurs in semiarid climates characterized by high summer temperatures and solar radiation. Heat stress events occur regularly during the growing season in these regions. For example, in the semiarid eastern half of Washington State, historic weather data show that, on average, 33% of the days during the growing season exceed 30 °C. To mediate some of the effects of heat stress, protective netting (PN) can be used to reduce the occurrence of fruit sunburn. However, the impacts of reduced solar radiation in a high light environment on light-use efficiency and photosynthesis are poorly understood. We sought to understand the ecophysiological response of apple (Malus domestica Borkh. cv. Honeycrisp) under blue photoselective PN during days with low (26.6 °C), moderate (33.7 °C), or high (38.1 °C) ambient temperatures. Two treatments were evaluated; an uncovered control and blue photoselective PN. Maximum photochemical efficiency of PSII, or photosystem II (Fv/Fm) was significantly greater at all measurement times under blue photoselective PN compared with the control on days with high ambient temperatures. Fv/Fm dropped below 0.79, which is considered the threshold for stress, at 1000 hr in the control and at 1200 hr under blue photoselective PN on a day with high ambient temperature. On days with low or moderate ambient temperatures, Fv/Fm was significantly greater under blue photoselective PN at 1400 hr, which coincided with the peak in solar radiation. ‘Honeycrisp’ apple exhibited dynamic photoinhibition as shown by the diurnal decline in Fv/Fm. Quantum photosynthetic yield of PSII (ΦPSII) was also generally greater under blue photoselective PN compared with the control for days with moderate or high ambient temperatures. Photochemical reflectance index (ΔPRI), the difference in reflectance between a stress-responsive and nonstress-responsive wavelength, was greater under PN compared with the control on the day with high ambient temperatures, with no differences observed under low or moderate ambient temperatures. Leaf gas exchange did not show noticeable improvement under blue photoselective netting when compared with the control despite the improvement in leaf-level photosynthetic light use efficiency. In conclusion, PN reduced incoming solar radiation, improved leaf-level photosynthetic light use efficiency, and reduced the symptoms of photoinhibition in a high-light, arid environment.


2007 ◽  
Vol 7 ◽  
pp. 134-140 ◽  
Author(s):  
N. E. Grulke ◽  
E. Paoletti ◽  
R. L. Heath

We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3exposure (~1 h in duration during the day, 120–220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3concentrations to a leaf cuvette. When exposed to chronic daytime O3exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3exposure) relative to unexposed control leaves (1.8× and 1.6×, black and blue oak, respectively). Short-term acute and chronic O3exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3exposure significantly enhanced nocturnal transpiration (2.0×) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3exposure. Daytime chronic and/or acute O3exposures can increase foliar water loss at night in deciduous oak seedlings.


Sign in / Sign up

Export Citation Format

Share Document