scholarly journals Genetic Control of Fruit Sugar Accumulation in a Lycopersicon esculentum × L. hirsutum Cross

1993 ◽  
Vol 118 (6) ◽  
pp. 859-863 ◽  
Author(s):  
John R. Stommel ◽  
Kathleen G. Haynes

Fruit of the cultivated tomato (Lycopersicon esculentum Mill.) store predominantly glucose and fructose whereas fruit of the wild species L. hirsutum Humb. & Bonpl. characteristically accumulate sucrose. Reducing sugar and sucrose concentrations were measured in mature fruit of parental, F1, F2, and backcross (BC1) populations derived from an initial cross of L. esculentum `Floradade' × L. hirsutum PI 390514. Generational means analysis demonstrated that additive effects were equal to dominance effects for percentage of reducing sugar. It was determined that a single major gene, dominant for a high percentage of reducing sugar, regulates the percentage of reducing sugar in tomatoes. We propose that this gene be designated sucr. Only additive effects were demonstrated to be important for glucose: fructose ratios. Using L. hirsutum as a donor parent for increasing total soluble solids concentration in the cultivated tomato is discussed.

HortScience ◽  
2006 ◽  
Vol 41 (2) ◽  
pp. 367-369 ◽  
Author(s):  
Robert L. Long ◽  
Kerry B. Walsh ◽  
David J. Midmore ◽  
Gordon Rogers

A common practice for the irrigation management of muskmelon (Cucumis melo L. reticulatus group) is to restrict water supply to the plants from late fruit development and through the harvest period. However, this late fruit development period is critical for sugar accumulation and water stress at this stage is likely to limit the final fruit soluble solids concentration (SSC). Two field irrigation experiments were conducted to test the idea that maintaining muskmelon plants free of water stress through to the end of harvest will maximise sugar accumulation in the fruit. In both trials, water stress before or during harvest detrimentally affected fruit SSC and fresh weight (e.g., no stress fruit 11.2% SSC, weight 1180 g; stress fruit 8.8% SSC, weight 990 g). Maintaining plants free of water stress from flowering through to the end of harvest is recommended to maximise yield and fruit quality.


HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 594e-594
Author(s):  
Charles J. Graham

Research is needed to better understand the influence of cell volume and fertility on watermelon transplant size and field performance in order to determine the most economic production practices. `Jubilee' watermelon transplants were grown using a 4 x 4 factorial experimental design consisting of 4 cell volumes (30.7, 65.5, 147.5, and 349.6 cm3) and 4 fertility rates (0, 1/4, 1/2, and full-strength Hoagland's solution). Transplant shoot dry weight significantly increased as cell volume and fertility increased. Increasing cell volume linearly increased watermelon number/ha and tons/ha for early and total harvest in 1995. The average weight per watermelon significantly increased for early-harvested fruit but not for total harvest as cell volume increased in 1995. Soluble solids concentration linearly increased with increasing cell volume for early and total harvests in 1995. Cell volume had no significant influence on the harvest parameters measured in 1997. In 1995, increasing fertility linearly increased watermelon number/ha and tons/ha for early harvests. Increasing fertility increased the soluble solids concentration linearly for early-harvested watermelons in 1997 but not in 1995. Fertility rate had no significant influence on any of the other harvest parameters measured in 1995 and 1997. The growing conditions and disease pressure in 1997 reduced melons/ha, yield, and soluble solids content when compared to 1995 values. The half-strength Hoagland's solution produced the greatest number of watermelons/ha, tons/ha, and the highest soluble solids concentration in 1995 and 1997. Pretransplant nutritional conditioning had no significant effect on total `Jubilee' watermelon production in Louisiana for 1995 and 1997.


2001 ◽  
Vol 11 (4) ◽  
pp. 561-566 ◽  
Author(s):  
Gene E. Lester ◽  
Michael A. Grusak

Commercially grown honey dew fruit [Cucumis melo (Inodorus group)] typically are harvested before abscission because fruit cut unripe have a longer storage life than fully ripe fruit. However, because fully ripe fruit contain higher concentrations of soluble solids (predominantly as sugars), an attribute that increases their preference among consumers, methods are being explored to extend the storage life of fully ripe fruit. In this study, fully abscised honey dew fruit were evaluated for tissue attributes and consumer preference following postharvest dipping in either chelated or nonchelated calcium (Ca) solutions. Calcium sources were an amino acid-chelated Ca, ethylene-diamine tetraacetic acid (EDTA)-chelated Ca, or calcium chloride (CaCl2), with each provided at three different rates. Fruit were evaluated at harvest, and after 14 or 22 days commercial storage. Evaluations were peel surface changes (color and disorders), hypodermal-mesocarp tissue Ca concentration, flesh firmness, soluble solids concentration, and consumer preference of the edible flesh. Peel color became yellowed and lighter during storage for all fruit, with higher Ca rates resulting in more intensely yellowed fruit. Hypodermal-mesocarp tissue Ca concentration was 0.90 mg·g-1 of fresh weight (900 ppm) at harvest, and declined in all fruit by 22 days storage. Peel disorders (disease and spotting) were none to slight for all fruit by 14 days storage, but by 22 days storage disease incidence ranged from none to severe, depending on the Ca source and rate. Fruit firmness declined in all fruit throughout storage, with the smallest declines measured in fruit treated with the amino acid-chelated Ca. Soluble solids concentration of fully ripe fruit was 12.3% at harvest, and showed either no decline or slight declines with storage among the treatments. Consumer preference was highest for freshly harvested fruit, but fruit were desirable even after 22 days storage across all treatments. Postharvest application of Ca at ≤0.16 m Ca in an amino acid-chelated form, versus EDTA-chelated Ca or CaCl2, slowed honey dew melon senescence so that after 22 days of commercial and retail storage the fruit were of high marketable quality, and there was no detrimental effect on consumer preference for the edible flesh.


1990 ◽  
Vol 115 (2) ◽  
pp. 265-269 ◽  
Author(s):  
Joshua D. Klein ◽  
Susan Lurie

The benefits conferred by a prestorage heat treatment on poststorage quality of apples (Malus domestics Borkh.) were measured on `Anna', a non-storing early cultivar, and `Granny Smith', a long-storing late cultivar. The major benefit was a decrease in rate of apple softening, both during OC storage and during simulated shelf life at 20C. Soluble solids concentration was not affected by heat treatment, but titratable acidity was reduced. Ethylene production after heat treatment and storage was similar to or higher than that of control apples, but respiration was lower. The optimum temperature and time combination for prestorage treatment of both cultivars was 4 days at 38C.


2019 ◽  
Vol 33 (2) ◽  
pp. 380-385
Author(s):  
Nicholas T. Basinger ◽  
Katherine M. Jennings ◽  
David W. Monks ◽  
Wayne E. Mitchem

AbstractStudies were conducted at six locations across North Carolina to determine tolerance of ‘Sunbelt’ grape (bunch grape) and muscadine grape (‘Carlos’, ‘Triumph’, ‘Summit’) to indaziflam herbicide. Treatments included indaziflam (0, 50, 73 g ai ha–1) or flumioxazin (213 g ai ha–1) applied alone in April, and sequential applications of indaziflam (36, 50, 73 g ai ha–1) or flumioxazin (213 g ai ha–1) applied in April followed by the same rate applied in June. No crop injury was observed across locations. Muscadine yield was not affected by herbicide treatments. Yield of ‘Sunbelt’ grape increased with sequential applications of indaziflam at 73 g ha–1 when compared to a single application of indaziflam at 50 g ha–1 or flumioxazin at 213 g ha–1 in 2015. Sequential applications of flumioxazin at 213 g ha–1 reduced ‘Sunbelt’ yield compared to a single application of indaziflam at 73 g ha–1 in 2016. Trunk cross-sectional area was unaffected by herbicide treatments. Fruit quality (soluble solids concentration, titratable acidity, and pH) for muscadine and bunch grape was not affected by herbicide treatments. Indaziflam was safe to use at registered rates and could be integrated into weed management programs for southern US vineyards.


2011 ◽  
Vol 236-238 ◽  
pp. 2769-2772 ◽  
Author(s):  
Xi Hong Li ◽  
Cheng Jun Wang ◽  
Ai Li Wang ◽  
Yao Xiao ◽  
Yao Tang ◽  
...  

Kiwifruit is very perishable especially at 20 °C. The quality of kiwifruit with 1-MCP treatment stored at 20 °C in modified packages was investigated. Three different polyolefin films, including 0.03mm thickness polyethylene (PE), 0.03mm and 0.05mm thickness poly (vinyl chloride) (PVC) films, were used as packaging films. Kiwifruit were fumigated with 1-MCP to delay ripeness and then packaged with the three films and control (air). O2 and CO2 concentrations in the packages, flesh firmness, soluble solids concentration (SSC), titratable acidity (TA) and ascorbic acid were measured. MAP treatments could postpone the increase of TTS, inhibit the reduction of TA, and avoid the decrease of flesh firmness. Kiwifruit packaged in 0.05mm PVC obtained 33% TA more than control fruit and approximate 25 % retention of initial firmness. However, MAP didn’t maintain more ascorbic acid content of kiwifruit. In conclusion, MAP using polyolefin films combination 1-MCP treatment, especially 0.05mm PVC, might be more effective for preserving the quality of kiwifruit.


2014 ◽  
pp. 253-312 ◽  
Author(s):  
John Lopresti ◽  
Ian Goodwin ◽  
Barry McGlasson ◽  
Paul Holford ◽  
John Golding

2008 ◽  
Vol 88 (4) ◽  
pp. 753-758 ◽  
Author(s):  
Jennifer R DeEll ◽  
Dennis P Murr ◽  
Behrouz Ehsani-Moghaddam

The effects of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, on the ripening and quality of Fantasia nectarines were examined. Fruit were harvested from two commercial orchards and subsequently exposed to 1 μL L-1 of 1-MCP for 24 h at 0°C. Following treatment, fruit were held at 0°C for 0, 2, or 4 wk, and then assessed for quality during a ripening period at 23°C. 1-MCP treatment improved postharvest firmness retention in nectarines after 0 and 2 wk at 0°C plus 4 days at 23°C. Soluble solids concentration (SSC) was lower in nectarines treated with 1 MCP and held for 0 or 4 wk at 0°C, compared with similar non-treated fruit. The peel ground color change from green to yellow was also delayed by 1-MCP. Nectarines treated with 1-MCP exhibited less CO2 and hydrophobic volatile production during 14 days at 23°C, compared with non-treated fruit. The overall inhibition of fruit ripening by 1-MCP appears transitory in Fantasia nectarines. Chilling injury was observed after 4 wk of storage at 0°C and 1-MCP-treated fruit had less visual chilling-related injury but greater chilling-induced flesh hardening. Further research is needed to determine the effects of 1-MCP on different chilling injury symptoms in nectarines. Key words: 1-MCP, fruit quality, ripening, storage, shelf-life, Prunus persica


Sign in / Sign up

Export Citation Format

Share Document