scholarly journals Effects of Postharvest Calcium and Fruit Coating Treatments on Postharvest Life, Quality Maintenance, and Fruit-surface Injury in `Golden Delicious' Apples

1998 ◽  
Vol 123 (2) ◽  
pp. 294-298 ◽  
Author(s):  
Robert A. Saftner ◽  
William S. Conway ◽  
Carl E. Sams

The effects of postharvest pressure infiltration of calcium chloride (CaCl2) solutions, fruit coatings and shrink-wrap film treatments of apples (Malus domestica Borkh. `Golden Delicious') on peel injury, quality attributes, respiration and internal atmospheres after storage at 0 °C for 2 to 6 months, and during subsequent ripening at 20 °C were investigated. CaCl2 treatments (0.14 to 0.34 mol·L-1) reduced internal and evolved ethylene and softening of fruits, but they also caused distinctive injury to the fruit surface. Following the CaCl2 treatments with a water rinse and a wax- or shellac-based coating or a shrink-wrap film reduced surface injury in fruits treated with 0.24 or 0.34 mol·L-1 solutions of CaCl2 and eliminated injury resulting from a 0.14 mol·L-1 CaCl2 treatment. The fruit coatings delayed ripening; as indicated by better retention of fresh mass, green peel color, titratable acidity and flesh firmness, and the reduced respiration and ethylene production rates that were observed upon transferring the fruits to 20 °C. Sequential treatments with CaCl2 and a shrink-wrap film also reduced fresh mass loss, respiration and ethylene production rates, but had no effect on other quality characteristics. Internal CO2 levels increased and O2 and ethylene levels decreased in surface coated fruits during storage at 0 °C. Coating fruits without the use of CaCl2 also delayed ripening though not as well as that for fruits sequentially treated with CaCl2 and a surface coating.

2003 ◽  
Vol 128 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Robert A. Saftner ◽  
Judith A. Abbott ◽  
William S. Conway ◽  
Cynthia L. Barden

Prestorage heat, CA storage, and pre- and poststorage treatments with the ethylene action inhibitor, 1-methylcyclopropene (MCP), were tested for their efficacy at inhibiting fungal decay and maintaining quality in `Golden Delicious' apples [Malus sylvestris (L.) Mill. Yellow Delicious Group] stored 0 to 5 months at 0 °C and 7 days at 20 °C. Before storage in air at 0 °C, preclimacteric fruit were treated with either MCP at a concentration of 1 μL·L-1 for 17 hours at 20 °C, 38 °C air for 4 days, MCP plus heat, or left untreated. Some sets of untreated fruit were stored in a controlled atmosphere of 1.5 kPa O2 and 2.5 kPa CO2 at 0 °C while other sets were removed from cold storage in air after 2.5 or 5 months, warmed to 20 °C, and treated with 1 μL·L-1 MCP for 17 hours. Prestorage MCP, heat, MCP plus heat treatments and CA storage decreased decay severity caused by wound-inoculated Penicillium expansum Link, Botrytis cinerea Pers.:Fr., and Colletotrichum acutatum Simmonds (teleomorph Glomerella acutata J.C. Guerber & J.C. Correll sp.nov.). Poststorage MCP treatment had no effect on decay severity. Both prestorage MCP treatment and CA storage delayed ripening as indicated by better retention of green peel color, titratable acidity, and Magness-Taylor flesh firmness, and the reduced respiration, ethylene production rates, and volatile levels that were observed upon transferring the fruit to 20 °C. The prestorage MCP treatment delayed ripening more than CA storage. Following 5 months cold storage, the prestorage MCP treatment maintained the shape of the compression force/deformation curve compared with that of fruit at harvest, as did CA storage, but at a lower force profile. The heat treatment had mixed effects on ripening: it hastened loss of green peel color and titratable acidity, but maintained firmness and delayed increases in respiration, ethylene production and volatile levels following cold storage. The MCP plus heat treatment inhibited ripening more than heat treatment alone but less than MCP treatment alone. In one of 2 years, the MCP plus heat treatment resulted in superficial injury to some of the fruit. Results indicated that MCP may provide an effective alternative to CA for reducing decay severity and maintaining quality during postharvest storage of `Golden Delicious' apples. Prestorage heat to control decay and maintain quality of apples needs further study, especially if used in combination with MCP.


Author(s):  
Ágda Malany Forte de Oliveira ◽  
Railene Hérica Carlos Rocha de Araújo ◽  
Kalinny Araújo Alves ◽  
Francisco de Assis de Sousa ◽  
Albert Einstein Mathias Medeiros Teodosio ◽  
...  

The use of new technologies is important for the preservation of guava, especially in reaching long-distance markets, being indispensable to associate storage techniques to increase the durability of fresh fruit. We evaluated the efficiency of edible coatings based on agar and Scenedemus sp. on the quality and post-harvest conservation of 'Paluma' guava. The experiment consisted of a randomized design with four replicates. The treatments (T) were composed of mixing concentrations between agar and Scenedesmus sp.: A: (0% + 0%); B: (0% + 0.5%); C: (0% + 1%); D: (0% + 2%); E: (3% + 0%); F: (3% + 0.5%); G: (4% + 0%) and H: (4% + 0.5%) applied by immersion. At the end of 11 days of storage at 10 °C ± 2ºC and 65% ± 5% RH, the fruit was analyzed. There was a significant effect (P < 0.05) of the coating based on Scenedesmus sp. on the brightness (L*) of the peel and pulp of guava, hue (°h) and chromaticity (C*) of the peel, loss of fresh mass, firmness of the pulp, ascorbic acid, titratable acidity, pH, SS/AT ratio, and total sugars. We observed a lower maturation and maintenance of the post-harvest quality of 'Paluma' guava with the active packages corresponding to treatments F and H. This included the maintenance of the indexes L*, C* and h of peel color, retention in the loss of fresh mass, in the firmness and maintenance of organic acids


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1090G-1090
Author(s):  
Marius Huysamer ◽  
John M. Labavitch ◽  
Adel A. Kader

Commercially grown Granny Smith apples were stored at 0°C in air or 1% O2, and 2 sets of samples were taken every 4 weeks over a 28 week period. One set was immediately analysed for weight loss, firmness, color, soluble solids, pH and titratable acidity. Alcohol-insoluble substances were analysed for starch, water-soluble uronides, water-insoluble uronides, cellulose and neutral sugars. The second set of samples was kept in air at 20°C for an additional week, during which respiration and ethylene production rates were measured, prior to the above analyses. Storage in 1% O2 led to the improved maintenance of firmness, reduced respiration and ethylene production rates in ambient air, and a reduced content of water-soluble uronides, suggesting a reduced degree of hydrolysis. The correlation between firmness and water-soluble uronide content was not very strong. The predominant neutral sugars present in the wall were arabinose and galactose, and activities of putative hydrolyses that may be involved in the metabolism of polymers containing these sugars will be discussed.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 737-740 ◽  
Author(s):  
Zisheng Luo

Mei (Prunus mume `Daqinghe') fruit were immersed in 20 °C (control), 47 °C (HWT47), 50 °C (HWT50), or 53°C (HWT53) water for 3 min after harvest, then stored at 20 °C. Firmness, peel color, chlorophyll, chlorophyllase activity, soluble solids content (SSC), titratable acidity (TA), respiration, ethylene production, and pectinmethylesterase (PME) and polygalacturonase (PG) activity were monitored to determine the effects of hot water treatment in delaying fruit ripening. Control fruit displayed a typical climacteric pattern of respiration and ethylene production. Peak CO2 production and ethylene production were observed 6 days after harvest. Fruit softening was accompanied by decreases in hue angle, chlorophyll content, SSC, and TA and increases in chlorophyllase and PME and PG activity. Hot water treatment delayed the onset of the climacteric peaks of CO2 and ethylene production. The delays were associated with delays in fruit softening, consistent with lags in the rise of PME and PG activity; delays in yellowing and chlorophyll breakdown, consistent with lags in the rise of chlorophyllase activity; and delays in loss of SSC and TA. The shelf life of fruit increased by 6 days, or 60%, with HWT47, and by 8 days, or 80%, with HWT50 or HWT53.


2008 ◽  
Vol 35 (No. 4) ◽  
pp. 137-144 ◽  
Author(s):  
J. Goliáš ◽  
P. Mýlová ◽  
A. Němcová

Measurements of titratable acidity, soluble solids, firmness, ethylene production and weight loss were made for five apple cultivars held in cold storage for 100 days. Carbosieve G in the traps of the enrichment column, which has only a moderate affinity for light hydrocarbons, was found to meet the requirements for the optimal thermal desorption of ethylene (130°C for 2 minutes) from the enrichment column to the analytical column. ANOVA showed significant differences in all these five parameters between the five cultivars Golden Delicious Reinders, Resista, Topaz, Meteor and Rubinstep, and also in the course of storage. In all cases, the changes in titratable acids measured during storage were especially significant, but the observed changes in sugar levels, as measured by refractometry, were too variable to be useful in this context. High rates of ethylene production impacted probably only indirectly on the loss of firmness and the other parameters which were measured. Discriminant analysis of the measurements of firmness, ethylene production and titratable acid provided the best means of differentiating the cultivars, although Golden Delicious Reinders and Resista still could not be completely separated. Other parameters (soluble solids and loss in weight) did not contribute to the discriminant resolution.


1991 ◽  
Vol 116 (5) ◽  
pp. 813-817 ◽  
Author(s):  
George F. Kramer ◽  
Chien Yi Wang ◽  
William S. Conway

Pressure infiltration of `Golden Delicious' and `McIntosh' apples (Malus domestica Borkh.) with polyamides resulted in an immediate increase in firmness. `Golden Delicious' apples were 2.7 N (0.25 mM spermidine) to 6.7 N (1.0 mM spermine) firmer, while `McIntosh' apples were 2.2 N (0.25 mM spermidine) to 5.3 N (1.0 mM spermine) firmer than the water-treated control. During 28 weeks of storage at 0C, the differences between the polyamine-treated and water-treated apples were even larger. Similar results were observed with a 3% Ca treatment, but the Ca treatment reduced the rate of softening to a greater extent than did the polyamine treatments in `Golden Delicious'. Polyamides increased the endogenous levels of the polyamides infiltrated; however, the levels declined rapidly with time in storage. Both polyamine and Ca inhibited the development of chilling injury symptoms (brown core) in `McIntosh'. The influence of polyamines on ethylene production was negligible in both cultivars. The Ca treatment, however, inhibited ethylene evolution in `Golden Delicious'. Polyamides, thus, may affect apple softening through rigidification of cell walls rather than through interactions with ethylene metabolism.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 457D-457
Author(s):  
Xuetong Fan ◽  
James P. Mattheis

Airborne methyl jasmonate (MJ) can modulate apple fruit ripening, including the degreening process. Degreening of `Fuji' and `Golden Delicious' apples by jasmonates [jasmonic acid (JA) and MJ] in aqueous solution was investigated. JA and MJ applied by dipping apples in solutions of jasmonates for 2 min enhanced degreening during ripening at 20C. MJ was more effective at promoting degreening compared to JA. The minimum concentration of jasmonates required to promote significant degreening during the 2-week ripening period was 1 mM. Degreening of jasmonate-treated apples ripened at 4C progressed slower compared to apples ripened at 20°C. JA stimulated apple fruit ethylene production at concentrations as low as 10 μM. Jasmonates at 1 or 10 mM were more effective at accelerating the degreening process compared to 0.35 or 3.5 mM ethephon. Firmness, soluble solids content, and titratable acidity of `Fuji' apples were not significantly affected by jasmonate treatments. Peel injury occurred on apples treated with 10 mM JA or 3.5 mM ethephon.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1090g-1090
Author(s):  
Marius Huysamer ◽  
John M. Labavitch ◽  
Adel A. Kader

Commercially grown Granny Smith apples were stored at 0°C in air or 1% O2, and 2 sets of samples were taken every 4 weeks over a 28 week period. One set was immediately analysed for weight loss, firmness, color, soluble solids, pH and titratable acidity. Alcohol-insoluble substances were analysed for starch, water-soluble uronides, water-insoluble uronides, cellulose and neutral sugars. The second set of samples was kept in air at 20°C for an additional week, during which respiration and ethylene production rates were measured, prior to the above analyses. Storage in 1% O2 led to the improved maintenance of firmness, reduced respiration and ethylene production rates in ambient air, and a reduced content of water-soluble uronides, suggesting a reduced degree of hydrolysis. The correlation between firmness and water-soluble uronide content was not very strong. The predominant neutral sugars present in the wall were arabinose and galactose, and activities of putative hydrolyses that may be involved in the metabolism of polymers containing these sugars will be discussed.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1052A-1052
Author(s):  
Luiz Argenta ◽  
Xuetong Fan ◽  
James Mattheis

The efficacy of the ethylene action inhibitor 1-methylcyclopropene (1-MCP) applied in water to slow ripening of `Golden Delicious' [Malus sylvestris var. domestica (Borkh.) Mansf.] apples was evaluated in comparison with 1-MCP applied as a gas in air. The material was applied by dipping fruit in 1-MCP water solutions (0, 0.03, 0.3 or 3 μM) for 4 min, or by exposing fruit to 1-MCP gas (0, 0.01, 0.1 or 1 μL·L-1) in air for 12 h. Fruit were held in air at 20 °C for 25 days after treatment or stored at 0.5 °C in air for up to 6 months followed by 7 days in air at 20 °C. Application of 1-MCP in water or air delayed the increase in respiration and ethylene production associated with fruit ripening, and reduced the amount of fruit softening, loss of acidity and change in peel color. Treatments applied in water required a concentration 700-fold higher compared to those applied in air to induce similar physiological responses. Fruit responses to 1-MCP varied with treatment concentration, and the maximum effects were obtained at concentrations of 0.1 or 1 μL·L-1 in air and 3 μM in water. Peel color change was impacted less than retention of firmness and titratable acidity for some 1-MCP treatments. Treatment with 1-MCP was less effective for slowing peel degreening when treated fruit were stored at 0.5 °C compared to storage at 20 °C. In 1 of the 3 years of this study, fruit treated with 1-MCP and stored in air at 0.5 °C developed a peel disorder typified by a gray-brown discoloration that is unlike other disorders previously reported for this cultivar.


2013 ◽  
Vol 31 (2) ◽  
pp. 279-286 ◽  
Author(s):  
Vanessa C Caron ◽  
Magda A Tessmer ◽  
Simone C Mello ◽  
Angelo P Jacomino

The economic importance of small tomato fruits has been increased considerably due to the significant levels of lycopene and sugars. However, to achieve these compounds, the harvest is limited to a ripening stage demanded by consumers, which could reduce this marked period. Harvesting at an early stage and use of conservation techniques are desirable to amplify the marketing period. The aim of this study was to evaluate the quality of small tomato fruits, Sweet Grape cultivar, harvested at two stages of ripening (light red and red), kept in three types of package (perforated PET, PEBD 30 μ and Vegetal Pack 18 μ) at a temperature of 20±1ºC and a relative humidity (RH) of 85±5% during 20 days. During this period, gas composition inside the packaging (O2, CO2 and ethylene), peel color, fresh mass loss, soluble solids content (SS), titratable acidity (TA), SS/TA and ascorbic acid levels were evaluated every 5 days. The lycopene content was determined at the beginning and the end of conservation. The experimental design was completely randomized in a split plot with four replications. Mass loss, peel color and gas composition were affected by both stage of harvest and package. The total SS/TA increased 4.74 during the conservation for two stages, regardless of package. The light red fruits reached after 20 days of conservation, mean levels of lycopene of 16.47 mg 100 g-1 and SS/TA of 18.43; on the other hand the red fruits achieved 15.30 mg 100 g-1 of lycopene and 16.80 of SS/TA. There was a mean increase of 8.4 mg 100 g-1 of lycopene in light red fruits, while in red fruits, the increase was 0.9 mg 100 g-1. The PEDB film was the best to maintain the fresh mass and peel color, therefore it was indicated for the maintenance of these attributes. The Vegetal Pack film showed no advantage in relation to the PET perforated packaging.


Sign in / Sign up

Export Citation Format

Share Document