scholarly journals (203) Responses of `Golden Delicious' Apples to 1-MCP Applied in Air and Water

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1052A-1052
Author(s):  
Luiz Argenta ◽  
Xuetong Fan ◽  
James Mattheis

The efficacy of the ethylene action inhibitor 1-methylcyclopropene (1-MCP) applied in water to slow ripening of `Golden Delicious' [Malus sylvestris var. domestica (Borkh.) Mansf.] apples was evaluated in comparison with 1-MCP applied as a gas in air. The material was applied by dipping fruit in 1-MCP water solutions (0, 0.03, 0.3 or 3 μM) for 4 min, or by exposing fruit to 1-MCP gas (0, 0.01, 0.1 or 1 μL·L-1) in air for 12 h. Fruit were held in air at 20 °C for 25 days after treatment or stored at 0.5 °C in air for up to 6 months followed by 7 days in air at 20 °C. Application of 1-MCP in water or air delayed the increase in respiration and ethylene production associated with fruit ripening, and reduced the amount of fruit softening, loss of acidity and change in peel color. Treatments applied in water required a concentration 700-fold higher compared to those applied in air to induce similar physiological responses. Fruit responses to 1-MCP varied with treatment concentration, and the maximum effects were obtained at concentrations of 0.1 or 1 μL·L-1 in air and 3 μM in water. Peel color change was impacted less than retention of firmness and titratable acidity for some 1-MCP treatments. Treatment with 1-MCP was less effective for slowing peel degreening when treated fruit were stored at 0.5 °C compared to storage at 20 °C. In 1 of the 3 years of this study, fruit treated with 1-MCP and stored in air at 0.5 °C developed a peel disorder typified by a gray-brown discoloration that is unlike other disorders previously reported for this cultivar.

HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1651-1655 ◽  
Author(s):  
Luiz C. Argenta ◽  
Xuetong Fan ◽  
James P. Mattheis

The efficacy of the ethylene action inhibitor 1-methylcyclopropene (1-MCP) applied in water to slow ripening of ‘Golden Delicious’ [Malus sylvestris var. domestica (Borkh.) Mansf.] apples was evaluated in comparison with 1-MCP applied in air. The material was applied by dipping fruit in 1-MCP water solutions (0.03, 0.3, or 3 mmol·m−3) for 4 min or by exposing fruit to 1-MCP gas (0.42, 4.2, or 42 μmol·m−3) in air for 12 h. Fruit were held in air at 20 °C for 25 days after treatment or stored at 0.5 °C in air for up to 6 months followed by 7 days in air at 20 °C. Application of 1-MCP in water or air delayed the increase in respiration and ethylene production associated with fruit ripening and reduced the amount of fruit softening, loss of acidity, and change in peel color. Treatments applied in water required a 700-fold higher amount of active ingredient compared with treatments applied in air to induce similar physiological responses. Fruit responses to 1-MCP varied with treatment concentration, and the maximum effects were obtained at concentrations of 4.2 or 42 μmol·m−3 in air and 3 mmol·m−3 in water. Peel color change was impacted less than retention of firmness and titratable acidity for 1-MCP treatments applied at concentrations of 4.2 or 42 μmol·m−3 in air and 0.3 or 3 mmol·m−3 in water. Treatment with 1-MCP in air or water was less effective for slowing peel degreening when treated fruit were stored at 0.5 °C compared with storage at 20 °C. Fruit treated with 1-MCP and stored in air at 0.5 °C developed a peel disorder typified by a gray·brown discoloration that is unlike other disorders previously reported for this cultivar. Symptoms were present when fruit were removed from cold storage and no change in symptom appearance was observed during a 7-d holding period at 20 °C.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1017B-1017
Author(s):  
Jiwon Jeong ◽  
James Lee ◽  
Donald J. Huber

This study was performed to characterize the physiological responses of tomato (Lycopersicon esculentum L.) fruit harvested at either 10% to 30% or 30% to 60% color change and treated with two forms of 1-methylcyclopropene (1-MCP). Tomato fruit were treated either by submersion for 1 min in 1-MCP aqueous solution at the ambient temperature or by exposure for 12 h at 20 °C in air with 1-MCP gas, then stored at 20 °C. The concentrations (1.0, 5.0, or 10.0 μL·L-1) in 1-MCP aqueous solution were achieved through addition of 0.5, 2.5, or 5.0 g of AFxRD-300 powder (2.0% formulation, Agro-Fresh, Inc.) to 10 L of the de-ionized water, following manufacturer's instructions. 1-MCP (0.5 μL·L-1) gas in a 174-L container was achieved through addition of 0.22 g of SmartFresh® powder (0.14% formulation, Agro-Fresh, Inc.) to 100 mL of tap water. Both forms of 1-MCP significantly delayed ripening of fruit at the two initial ripeness stages, as noted by a significant delay in fruit softening and peel color change. The firmness of 30% to 60% color change tomatoes was significantly retained in response to gaseous or aqueous 1-MCP. Control fruit softened rapidly and reached the minimum marketable firmness value (about 5 N) within 8 days of storage at 20 °C, whereas fruit treated with gaseous 1-MCP (0.5 μL·L-1) or aqueous 1-MCP (1.0 or 5.0 μL·L-1) reached the same stage after 16, 20, or 24 days, respectively. Firmness retention was also highly significant for 10% to 30% color change tomatoes treated with both forms of 1-MCP. The highest concentration of aqueous 1-MCP (10.0 μL·L-1) did not result in a further delay in ripening compared with treatment at 5.0 or 1.0 μL·L-1 1-MCP.


2003 ◽  
Vol 128 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Robert A. Saftner ◽  
Judith A. Abbott ◽  
William S. Conway ◽  
Cynthia L. Barden

Prestorage heat, CA storage, and pre- and poststorage treatments with the ethylene action inhibitor, 1-methylcyclopropene (MCP), were tested for their efficacy at inhibiting fungal decay and maintaining quality in `Golden Delicious' apples [Malus sylvestris (L.) Mill. Yellow Delicious Group] stored 0 to 5 months at 0 °C and 7 days at 20 °C. Before storage in air at 0 °C, preclimacteric fruit were treated with either MCP at a concentration of 1 μL·L-1 for 17 hours at 20 °C, 38 °C air for 4 days, MCP plus heat, or left untreated. Some sets of untreated fruit were stored in a controlled atmosphere of 1.5 kPa O2 and 2.5 kPa CO2 at 0 °C while other sets were removed from cold storage in air after 2.5 or 5 months, warmed to 20 °C, and treated with 1 μL·L-1 MCP for 17 hours. Prestorage MCP, heat, MCP plus heat treatments and CA storage decreased decay severity caused by wound-inoculated Penicillium expansum Link, Botrytis cinerea Pers.:Fr., and Colletotrichum acutatum Simmonds (teleomorph Glomerella acutata J.C. Guerber & J.C. Correll sp.nov.). Poststorage MCP treatment had no effect on decay severity. Both prestorage MCP treatment and CA storage delayed ripening as indicated by better retention of green peel color, titratable acidity, and Magness-Taylor flesh firmness, and the reduced respiration, ethylene production rates, and volatile levels that were observed upon transferring the fruit to 20 °C. The prestorage MCP treatment delayed ripening more than CA storage. Following 5 months cold storage, the prestorage MCP treatment maintained the shape of the compression force/deformation curve compared with that of fruit at harvest, as did CA storage, but at a lower force profile. The heat treatment had mixed effects on ripening: it hastened loss of green peel color and titratable acidity, but maintained firmness and delayed increases in respiration, ethylene production and volatile levels following cold storage. The MCP plus heat treatment inhibited ripening more than heat treatment alone but less than MCP treatment alone. In one of 2 years, the MCP plus heat treatment resulted in superficial injury to some of the fruit. Results indicated that MCP may provide an effective alternative to CA for reducing decay severity and maintaining quality during postharvest storage of `Golden Delicious' apples. Prestorage heat to control decay and maintain quality of apples needs further study, especially if used in combination with MCP.


2015 ◽  
Vol 35 (1) ◽  
pp. 144-153 ◽  
Author(s):  
FRANCISCA L. DE C. MACHADO ◽  
JOÃO P. CAJAZEIRA ◽  
JOSÉ M. C. DA COSTA

This study aimed at evaluating the effects of ethylene on peel color and compositional changes in ‘Lane late’ orange stored under refrigerated and ambient conditions. Physiologically mature, but green-peeled, oranges were exposed to ethylene gas under room temperature and high relative humidity for 24 hours. Storage chamber was ventilated with fresh air after 12 hours to mitigate consequences derived from fruit respiration. Both nondestructive analysis, such as peel color (hue angle, chromaticity, and brightness) and weight loss, and destructive ones (soluble solids, titratable acidity, pH, soluble solids to acidity ratio, and puncture force) were performed upon harvest, after degreening, and every three days during eighteen days in storage. Experiment was carried out using an entirely randomized design with thirty replications for nondestructive and four replications for destructive analyses, in a split plot scheme. Exposure to ethylene ensured a golden yellow peel for both fruit stored under ambient and refrigerated conditions. High relative humidity, associated with low temperature prevented fruit from losing moisture. Fruit exposure to ethylene did not affect weight loss, soluble solids, titratable acidity, pH, soluble solids, acidity ratio, or puncture force.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 737-740 ◽  
Author(s):  
Zisheng Luo

Mei (Prunus mume `Daqinghe') fruit were immersed in 20 °C (control), 47 °C (HWT47), 50 °C (HWT50), or 53°C (HWT53) water for 3 min after harvest, then stored at 20 °C. Firmness, peel color, chlorophyll, chlorophyllase activity, soluble solids content (SSC), titratable acidity (TA), respiration, ethylene production, and pectinmethylesterase (PME) and polygalacturonase (PG) activity were monitored to determine the effects of hot water treatment in delaying fruit ripening. Control fruit displayed a typical climacteric pattern of respiration and ethylene production. Peak CO2 production and ethylene production were observed 6 days after harvest. Fruit softening was accompanied by decreases in hue angle, chlorophyll content, SSC, and TA and increases in chlorophyllase and PME and PG activity. Hot water treatment delayed the onset of the climacteric peaks of CO2 and ethylene production. The delays were associated with delays in fruit softening, consistent with lags in the rise of PME and PG activity; delays in yellowing and chlorophyll breakdown, consistent with lags in the rise of chlorophyllase activity; and delays in loss of SSC and TA. The shelf life of fruit increased by 6 days, or 60%, with HWT47, and by 8 days, or 80%, with HWT50 or HWT53.


1998 ◽  
Vol 123 (2) ◽  
pp. 294-298 ◽  
Author(s):  
Robert A. Saftner ◽  
William S. Conway ◽  
Carl E. Sams

The effects of postharvest pressure infiltration of calcium chloride (CaCl2) solutions, fruit coatings and shrink-wrap film treatments of apples (Malus domestica Borkh. `Golden Delicious') on peel injury, quality attributes, respiration and internal atmospheres after storage at 0 °C for 2 to 6 months, and during subsequent ripening at 20 °C were investigated. CaCl2 treatments (0.14 to 0.34 mol·L-1) reduced internal and evolved ethylene and softening of fruits, but they also caused distinctive injury to the fruit surface. Following the CaCl2 treatments with a water rinse and a wax- or shellac-based coating or a shrink-wrap film reduced surface injury in fruits treated with 0.24 or 0.34 mol·L-1 solutions of CaCl2 and eliminated injury resulting from a 0.14 mol·L-1 CaCl2 treatment. The fruit coatings delayed ripening; as indicated by better retention of fresh mass, green peel color, titratable acidity and flesh firmness, and the reduced respiration and ethylene production rates that were observed upon transferring the fruits to 20 °C. Sequential treatments with CaCl2 and a shrink-wrap film also reduced fresh mass loss, respiration and ethylene production rates, but had no effect on other quality characteristics. Internal CO2 levels increased and O2 and ethylene levels decreased in surface coated fruits during storage at 0 °C. Coating fruits without the use of CaCl2 also delayed ripening though not as well as that for fruits sequentially treated with CaCl2 and a surface coating.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 506E-507 ◽  
Author(s):  
Robert A. Saftner ◽  
Judith A. Abbott ◽  
William S. Conway ◽  
Cynthia L. Barden

Air heat, methyl jasmonate dip, and vapor treatments with the ethylene action inhibitor 1-methylcyclopropene (MCP) were used to evaluate their effects on ripening-related characteristics and susceptibility to fungal decay in `Golden Delicious' apples (Malus ×domestica Borkh.) through 5 months of storage at 0 °C and ripening at 20 °C for 7 days. Preclimacteric fruit were treated with MCP vapor at a concentration of 1 μL•L-1 for 18 h at 20 °C, 38 °C air for 4 days, methyl jasmonate dip at concentrations of 10-5 and 10-4 for 3 min at 20 °C, combinations thereof, or left untreated before storage in air at 0 °C. One set of untreated fruit was stored in a controlled atmosphere of 1.5 O2 and 2.5% CO2 at 0 °C. The MCP treatment and CA storage delayed ripening, as indicated by better retention of green peel color and flesh firmness, and the reduced respiration, ethylene production rates, and volatile (both flavor- and superficial scald-associated) levels that were observed upon transferring the fruit to 20 °C. The MCP treatment followed by air storage delayed ripening more than CA storage. The heat treatment also delayed ripening but hastened skin yellowing. While methyl jasmonate dips had no significant effect on ripening, they were the only treatments used that reduced the incidence of postharvest decay and discolored the surface of some fruit. The results indicate that MCP may provide an effective alternative to CA for maintaining quality during cold storage and ripening. The results also indicate that methyl jasmonate dip treatment may reduce postharvest decay of fruit while maintaining fruit quality.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1005D-1006
Author(s):  
James Mattheis ◽  
David Rudell

Metabolism of peel constituents was assessed during ripening of `Delicious' and `Golden Delicious' apples. The ethylene action inhibitor 1-methylcyclopropene (1-MCP) and/or controlled atmosphere storage (CA) were used to limit ethylene activity during and after storage at 1 °C. `Delicious' apples not exposed to 1-MCP developed a brownish discoloration (not superficial scald) during the initial 2 months of storage in air. LC/MS analyses of peel components indicated 1-MCP and/or CA inhibited the degradation of compounds responsible for red peel color (i.e., idaein) as well as other flavonoids. Ethylene regulation of metabolism of other phenolic and related constituents including (-)epicatechin and chlorogenic acid appears to be compound specific. The (-)epicatechin content is not impacted by 1-MCP or CA, while chlorogenic acid accumulation is reduced in fruit exposed to 1-MCP and/or stored in CA. β-carotene and lutein content in peel of `Delicious' fruit stored in air was lower compared with untreated controls. Chlorophyll degradation was enhanced in air-stored fruit previously exposed to 1-MCP; however, this result was not observed in 1-MCP exposed fruit from CA. Results for `Golden Delicious' apples also indicated that exposure to 1-MCP and CA, as well as storage duration, impacts metabolism of peel constituents. Chlorophyll degradation was delayed in fruit previously exposed to 1-MCP and then stored in CA. Impacts of 1-MCP and storage environment on concentrations of other `Golden Delicious' peel constituents increased with storage duration. The results indicate metabolism of apple fruit peel constituents during fruit ripening is differentially regulated by ethylene.


HortScience ◽  
2014 ◽  
Vol 49 (3) ◽  
pp. 384-392 ◽  
Author(s):  
Esnath T. Hamadziripi ◽  
Karen I. Theron ◽  
Magdalena Muller ◽  
Willem J. Steyn

We hypothesized that the microclimate at different positions in the tree canopy may affect the appearance, eating quality, and consumer preference for apple fruit. Hence, the aim of this study was to evaluate the internal and external quality of inner and outer canopy apples in relation to consumer preference for the eating quality and appearance of these fruit. We determined peel color, flesh firmness, percentage starch breakdown, soluble solids concentration (TSS), titratable acidity (TA), and dry matter concentration (DMC) for inner and outer canopy ‘Starking’, ‘Golden Delicious’, and ‘Granny Smith’ from the Ceres region in South Africa in the 2009–10 and 2010–11 seasons. We also determined reducing sugars, total phenolics, and total antioxidant capacity in the 2009–10 season. A trained panel assessed the sensory characteristics of fruit while consumers were asked to indicate their liking for the eating quality and appearance of fruit. Outer canopy fruit of all three cultivars had higher antioxidant capacity, TSS, DMC, lower TA, and were generally sweeter than inner canopy fruit. Consumers could discern eating quality differences and generally preferred the eating quality of outer canopy fruit. The appearance of outer canopy fruit was not preferred in the “green” cultivars, probably as a result of the unfamiliarity of consumers with such fruit. Consumers did, however, prefer the redder outer canopy to the less red inner canopy ‘Starking’ fruit. The redness of ‘Starking’ fruit in this study can therefore be seen as a true signal of eating quality, i.e., the redder the fruit, the better the eating quality, and this would probably apply to other fully red and bicolored apple cultivars. Hence, the classification of red cultivars into different quality classes based on the extent of red color development seems justified from an eating quality perspective. In contrast, blushed outer canopy ‘Granny Smith’ and ‘Golden Delicious’ are culled for aesthetic reasons. It might be possible to develop a niche local market for these blushed fruit based on their better eating quality. Our data were generated in older orchards with trees planted at low density and with large canopies. Planer, two-dimensional canopies are likely to reduce the differences between inner and outer canopy fruit. Differences in macroclimate or in fruit maturity between seasons may also have an overbearing effect on fruit quality parameters compared with canopy microclimatic conditions.


HortScience ◽  
2017 ◽  
Vol 52 (10) ◽  
pp. 1385-1389 ◽  
Author(s):  
James P. Mattheis

Ripening and development of physiological disorders and decay were assessed in ‘d’Anjou’ pear fruit after 1-methylcyclopropene (1-MCP) treatment and cold storage in air or controlled atmosphere (CA). Fruit were exposed after harvest to 0 or 12.6 μmol·L−1 1-MCP and then stored at 0.5 °C in air or 1, 3, or 5 kPa O2 with 0.5 kPa CO2. Pears were held poststorage at 20 °C for 7 days before analysis. 1-MCP fruit usually had higher hue compared with controls. Softening after removal from storage was delayed in 1-MCP fruit regardless of storage atmosphere; however, control fruit stored in air or CA ripened to below 23 N, a minimum value for consumer acceptance, after all storage durations. 1-MCP fruit stored in air, 3, or 5 kPa O2 softened in the outer cortex (fruit surface to 8 mm into the cortex) to below 23 N only after 9 m, however, only fruit stored in air softened to less than 23 N in the inner cortex (8 mm to coreline). 1-MCP treatment also delayed deformation in cortex tissue tensile strength (TTS); after six or more months, 1-MCP fruit TTS was lower compared with those for control fruit. After 9 m, 1-MCP fruit stored in air had TTS values similar to those of controls whereas values for fruit stored in CA increased with CA O2 concentration. Titratable acidity was higher in 1-MCP-treated fruit stored in air (6 m only) or 3 or 5 kPa O2 compared with controls. Superficial scald developed after 6 m on control fruit stored in air or 5 kPa O2 and on control CA fruit regardless of O2 concentration after 9 m. No 1-MCP fruit developed scald. The results indicate ‘d’Anjou’ pear ripening in response to 1-MCP is influenced by storage pO2 as well as storage duration, and at the 1-MCP treatment concentration used, softening to a consumer standard for firmness occurred only in fruit cold stored in air for 9 months plus a 7-day poststorage ripening period. These fruit had peel hue less than 100, and the yellow peel color may not be consistent with current market expectations.


Sign in / Sign up

Export Citation Format

Share Document