scholarly journals Influence of Ripening and Turgor on the Tensile Properties of Pears: A Microscopic Study of Cellular and Tissue Changes

2000 ◽  
Vol 125 (3) ◽  
pp. 350-356 ◽  
Author(s):  
Nele De Belie ◽  
Ian C. Hallett ◽  
F. Roger Harker ◽  
Josse De Baerdemaeker

The tensile properties of european pear (Pyrus communis L. `Beurre Bosc') and asian pear (Pyrus pyrifolia Nakai `Choguro') were examined using a microscope-mounted apparatus that allowed direct observation and recording of cell and tissue changes during testing. To manipulate turgor potential, tissue slices from fruit of different firmness (ripeness) were incubated in sucrose solutions of differing water potential. Solution water potentials were adjusted for individual fruit, and varied between -2.5 and 1 MPa from the water potential of the expressed juice. Fruit firmness declined from 100 to 20 N and from 60 to 25 N during ripening of european and asian pears, respectively. For both european and asian pears the relationship between fruit firmness and tensile strength of tissue soaked in isotonic solutions was sigmoidal, with the major mechanism of tissue failure being cell wall failure and cell fracture at high firmness and intercellular debonding at low firmness. In the intermediate zone, where fruit firmness and tissue tensile strength decreased simultaneously, a mixture of cell wall rupture and intercellular debonding could be observed. Tissue and cell extension at maximum force both declined similarly as fruit softened. Tensile strength of tissue from firm pears (>50 N firmness, >0.8 N tensile strength) decreased by as much as 0.6 N during incubation in solutions that were more concentrated than the cell sap (hypertonic solutions). When similar tissue slices were incubated in solutions that were less concentrated than the cell sap (hypotonic solutions), the tensile strength increased by up to 0.4 N. This is interpreted as stress-hardening of the cell wall in response to an increase in cell turgor. Tensile strength of tissue from soft pears was not affected by osmotic changes, as the mechanism of tissue failure is cell-to-cell debonding rather than cell wall failure.

Alloy Digest ◽  
2011 ◽  
Vol 60 (8) ◽  

Abstract Wieland-FX9 is a high-manganese bronze alloy that has good strength and is available in numerous cold work tempers related to its minimum tensile strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Cu-801. Producer or source: Wieland Metals Inc..


Alloy Digest ◽  
2010 ◽  
Vol 59 (12) ◽  

Abstract Dogal 600 and 800 DP are high-strength steels with a microstructure that contains ferrite, which is soft and formable, and martensite, which is hard and contributes to the strength of the steel. The designation relates to the lowest tensile strength. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, joining, and surface treatment. Filing Code: CS-160. Producer or source: SSAB Swedish Steel Inc. and SSAB Swedish Steel.


Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract Lucefin Group C30, C30E, and C30R are medium-carbon, non-alloy steels that are used in the normalized, cold worked, or quenched and tempered condition. C30E and C30R may also be flame or induction hardened. C30, C30E, and C30R are widely used for small, moderately stressed parts, where higher strength levels are needed than can be achieved in the lower carbon grades, and also where toughness is more important than high tensile strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-206. Producer or source: Lucefin S.p.A.


Alloy Digest ◽  
2013 ◽  
Vol 62 (6) ◽  

Abstract ToughMet 2 CX is a Cu-9Ni-6Sn alloy that combines low coefficient of friction with wear resistance. ToughMet alloys are a line of spinodal hardened Cu-Ni antigalling alloys for bearings capable of performing with a variety of shafting materials and lubricants. The alloys combine a high lubricity with wear resistance in these severe loading conditions. ToughMet 2CX in the cast and spinodally hardened (CX) condition exhibits tensile strength in excess of 724 MPa (105 ksi) and hardness exceeding HRC 27 with excellent machinability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: Cu-819. Producer or source: Materion Brush Performance Alloys.


Alloy Digest ◽  
1968 ◽  
Vol 17 (12) ◽  

Abstract Brush Alloy 190 is a mill-heat treated beryllium copper strip with a tensile strength up to 190,000 psi. It eliminates the need of customer heat-treating by providing high properties combined with exceptional formability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, joining, and surface treatment. Filing Code: Cu-194. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1998 ◽  
Vol 47 (5) ◽  

Abstract Inland DuraSpring is a high-strength microalloyed spring steel for use in high stress coil springs for automobile and light truck suspension systems. This bar product offers significant improvements in tensile strength, fatigue properties, and fracture toughness compared to conventional spring steels. This datasheet provides information on composition, hardness, and tensile properties as well asfracture toughness and fatigue. Filing Code: SA-496. Producer or source: Ispat Inland Inc.


Alloy Digest ◽  
1997 ◽  
Vol 46 (10) ◽  

Abstract Vasco 9-4-20 (0.20 wt% C) is a premium quality aircraft steel that combines high tensile strength with good fracture toughness. It is a heat-treatable alloy capable of developing an ultimate tensile strength greater than 190 ksi. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: SA-489. Producer or source: Vasco, An Allegheny Teledyne Company.


Alloy Digest ◽  
1976 ◽  
Vol 25 (10) ◽  

Abstract Alloy Steel 1.8 Cu-1.0 Mn-1.2 Si is a low-carbon (0.20% max.) cast steel designed to provide intermediate tensile and yield strength. Copper lowers the ductility and toughness of cast steel but, for a given increase in tensile strength, the loss of ductility and toughness is less if copper is added than if carbon is increased. This steel has many uses such as booms, long shafting and gears. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SA-325. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1981 ◽  
Vol 30 (11) ◽  

Abstract CARPENTER STAINLESS TYPE 405 is a 12% chromium stainless steel that does not harden appreciably. It was designed to allow its use in the as-welded condition. It is particularly desirable for welded applications which require finish machining. It has moderate tensile strength (70,000 psi) in the fully annealed condition and resists corrosion in mild environments. It is used for parts and structures that cannot be annealed after welding. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-395. Producer or source: Carpenter.


Alloy Digest ◽  
1976 ◽  
Vol 25 (12) ◽  

Abstract NJZ Alloy No. 55 is a zinc-cadmium alloy characterized by high tensile strength and hardness but low ductility. It has high stiffness and resiliency but low drawing and forming characteristics. Its applications include hardware and medallions. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep and fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Zn-30. Producer or source: New Jersey Zinc Company.


Sign in / Sign up

Export Citation Format

Share Document